3,079 research outputs found

    The df: A proposed data format standard

    Get PDF
    A standard is proposed describing a portable format for electronic exchange of data in the physical sciences. Writing scientific data in a standard format has three basic advantages: portability; the ability to use metadata to aid in interpretation of the data (understandability); and reusability. An improperly formulated standard format tends towards four disadvantages: (1) it can be inflexible and fail to allow the user to express his data as needed; (2) reading and writing such datasets can involve high overhead in computing time and storage space; (3) the format may be accessible only on certain machines using certain languages; and (4) under some circumstances it may be uncertain whether a given dataset actually conforms to the standard. A format was designed which enhances these advantages and lessens the disadvantages. The fundamental approach is to allow the user to make her own choices regarding strategic tradeoffs to achieve the performance desired in her local environment. The choices made are encoded in a specific and portable way in a set of records. A fully detailed description and specification of the format is given, and examples are used to illustrate various concepts. Implementation is discussed

    Neurophysiology

    Get PDF
    Contains reports on one research project.Bell Telephone Laboratories IncorporatedNational Institutes of Health (Grant 5 PO1 GM14940-05

    Aminoguanidine Reverses the Loss of Functional Hyperemia in a Rat Model of Diabetic Retinopathy

    Get PDF
    Flickering light dilates retinal arterioles and increases retinal blood flow, a response termed functional hyperemia. This response is diminished in diabetic patients even before the appearance of overt clinical retinopathy. The loss of functional hyperemia could deprive retinal neurons of oxygen and nutrients, possibly exacerbating the development of diabetic retinopathy. We have tested whether inhibiting inducible nitric oxide synthase (iNOS) reverses the loss of functional hyperemia in diabetic rat retinas in vivo. Changes in retinal arteriole diameter were measured following diffuse flickering light stimulation in control rats, streptozotocin-induced type 1 diabetic rats and diabetic rats treated with aminoguanidine (AG; an iNOS inhibitor), either acutely via IV injection or chronically in drinking water. Flickering light-evoked large arteriole dilations (10.8 ± 1.1%) in control rats. This response was diminished by 61% in diabetic animals (4.2 ± 0.3%). Both acute and chronic treatment with AG restored flicker-induced arteriole dilations in diabetic rats (8.8 ± 0.9 and 9.5 ± 1.3%, respectively). The amplitude of the corneal electroretinogram b-wave was similar in control and diabetic animals. These findings demonstrate that inhibiting iNOS with AG is effective in preventing the loss of, and restoring, normal functional hyperemia in the diabetic rat retina. Previous work has demonstrated the efficacy of iNOS inhibitors in slowing the progression of diabetic retinopathy. This effect could be due, in part, to a restoration of functional hyperemia

    Consumption-Based Conservation Targeting: Linking Biodiversity Loss to Upstream Demand through a Global Wildlife Footprint.

    Get PDF
    Although most conservation efforts address the direct, local causes of biodiversity loss, effective long-term conservation will require complementary efforts to reduce the upstream economic pressures, such as demands for food and forest products, which ultimately drive these downstream losses. Here, we present a wildlife footprint analysis that links global losses of wild birds to consumer purchases across 57 economic sectors in 129 regions. The United States, India, China, and Brazil have the largest regional wildlife footprints, while per-person footprints are highest in Mongolia, Australia, Botswana, and the United Arab Emirates. A US$100 purchase of bovine meat or rice products occupies approximately 0.1 km2 of wild bird ranges, displacing 1-2 individual birds, for 1 year. Globally significant importer regions, including Japan, the United Kingdom, Germany, Italy, and France, have large footprints that drive wildlife losses elsewhere in the world and represent important targets for consumption-focused conservation attention

    Integrating physiology into correlative models can alter projections of habitat suitability under climate change for a threatened amphibian

    Get PDF
    Rapid global change has increased interest in developing ways to identify suitable refu-gia for species of conservation concern. Correlative and mechanistic species distribu-tion models (SDMs) represent two approaches to generate spatially-explicit estimates of climate vulnerability. Correlative SDMs generate distributions using statistical associations between environmental variables and species presence data. In contrast, mechanistic SDMs use physiological traits and tolerances to identify areas that meet the conditions required for growth, survival and reproduction. Correlative approaches assume modeled environmental variables influence species distributions directly or indirectly; however, the mechanisms underlying these associations are rarely verified empirically. We compared habitat suitability predictions between a correlative-only SDM, a mechanistic SDM and a correlative framework that incorporated mechanis-tic layers (‘hybrid models’). Our comparison focused on green salamanders Aneides aeneus, a priority amphibian threatened by climate change throughout their disjunct range. We developed mechanistic SDMs using experiments to measure the thermal sensitivity of resistance to water loss (ri) and metabolism. Under current climate con-ditions, correlative-only, hybrid and mechanistic SDMs predicted similar overlap in habitat suitability; however, mechanistic SDMs predicted habitat suitability to extend into regions without green salamanders but known to harbor many lungless salaman-ders. Under future warming scenarios, habitat suitability depended on climate sce-nario and SDM type. Correlative and hybrid models predicted a 42% reduction or 260% increase in area considered to be suitable depending on the climate scenario. In mechanistic SDMs, energetically suitable habitat declined with both climate scenarios and was driven by the thermal sensitivity of ri. Our study indicates that correlative-only and hybrid approaches produce similar predictions of habitat suitability; however, discrepancies can arise for species that do not occupy their entire fundamental niche, which may hold consequences of conservation planning of threatened species

    Early Action on HFCs Mitigates Future Atmospheric Change

    Get PDF
    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases (GHGs), the distinct structure of their atmospheric impacts, and how the timing of potential GHG regulations would affect future changes in atmospheric temperature and ozone. Chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19K at 80hPa. Three HFC mitigation scenarios demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90 of the climate change impacts of HFCs can be avoided if emissions stop by 2030

    When Will the Antarctic Ozone Hole Recover?

    Get PDF
    The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. Herein we demonstrate an ozone hole parametric model. This model is based upon: 1) a new algorithm for estimating C1 and Br levels over Antarctica and 2) late-spring Antarctic stratospheric temperatures. This parametric model explains 95% of the ozone hole area s variance. We use future ODS levels to predict ozone hole recovery. Full recovery to 1980 levels will occur in approximately 2068. The ozone hole area will very slowly decline over the next 2 decades. Detection of a statistically significant decrease of area will not occur until approximately 2024. We further show that nominal Antarctic stratospheric greenhouse gas forced temperature change should have a small impact on the ozone hole

    Neurophysiology

    Get PDF
    Contains reports on seven research projects.National Institutes of Health (Training Grant 5 TO1 EY00090)Bell Laboratories (Grant

    Reconsidering "the love of art" : evaluating the potential of art museum outreach

    Get PDF
    Art museums have long been identified as bastions of social and cultural exclusion. This conclusion was best evidenced by the large-scale 1967 French study by Bourdieu and Darbel demonstrating the exclusionary nature of “The Love of Art.” However, in recent years there have been increasing efforts to reach out to a broader range of visitors beyond conventional audiences. The present study investigates the impacts of an outreach program at a UK art museum, which sought to engage socially excluded young mothers. This study employs ethnographic research methods on a longitudinal basis to develop qualitative insights about the program seeking to mitigate cultural exclusion. While the study’s findings uphold many longstanding critiques of art museums’ conventional approaches, the study also indicates that carefully designed outreach activities can overcome such limitations and enhance cultural engagement. Thus, art museums’ limited appeal is tied to problematic public engagement practices that can be changed
    corecore