74 research outputs found

    Large-Scale Modelling of the Environmentally-Driven Population Dynamics of Temperate Aedes albopictus (Skuse)

    Get PDF
    The Asian tiger mosquito, Aedes albopictus, is a highly invasive vector species. It is a proven vector of dengue and chikungunya viruses, with the potential to host a further 24 arboviruses. It has recently expanded its geographical range, threatening many countries in the Middle East, Mediterranean, Europe and North America. Here, we investigate the theoretical limitations of its range expansion by developing an environmentally-driven mathematical model of its population dynamics. We focus on the temperate strain of Ae. albopictus and compile a comprehensive literature-based database of physiological parameters. As a novel approach, we link its population dynamics to globally-available environmental datasets by performing inference on all parameters. We adopt a Bayesian approach using experimental data as prior knowledge and the surveillance dataset of Emilia-Romagna, Italy, as evidence. The model accounts for temperature, precipitation, human population density and photoperiod as the main environmental drivers, and, in addition, incorporates the mechanism of diapause and a simple breeding site model. The model demonstrates high predictive skill over the reference region and beyond, confirming most of the current reports of vector presence in Europe. One of the main hypotheses derived from the model is the survival of Ae. albopictus populations through harsh winter conditions. The model, constrained by the environmental datasets, requires that either diapausing eggs or adult vectors have increased cold resistance. The model also suggests that temperature and photoperiod control diapause initiation and termination differentially. We demonstrate that it is possible to account for unobserved properties and constraints, such as differences between laboratory and field conditions, to derive reliable inferences on the environmental dependence of Ae. albopictus populations

    Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival

    Get PDF
    Climate change and global warming are emerging as important threats to human health, particularly through the potential increase in vector- and water-borne diseases. Environmental variables are known to affect substantially the population dynamics and abundance of the poikilothermic vectors of disease, but the exact extent of this sensitivity is not well established. Focusing on malaria and its main vector in Africa, Anopheles gambiae sensu stricto, we present a set of novel mathematical models of climate-driven mosquito population dynamics motivated by experimental data suggesting that in An. gambiae, mortality is temperature and age dependent. We compared the performance of these models to that of a “standard” model ignoring age dependence. We used a longitudinal dataset of vector abundance over 36 months in sub-Saharan Africa for comparison between models that incorporate age dependence and one that does not, and observe that age-dependent models consistently fitted the data better than the reference model. This highlights that including age dependence in the vector component of mosquito-borne disease models may be important to predict more reliably disease transmission dynamics. Further data and studies are needed to enable improved fitting, leading to more accurate and informative model predictions for the An. gambiae malaria vector as well as for other disease vectors

    ABC-SysBio-approximate Bayesian computation in Python with GPU support.

    Get PDF
    Motivation: The growing field of systems biology has driven demand for flexible tools to model and simulate biological systems. Two established problems in the modeling of biological processes are model selection and the estimation of associated parameters. A number of statistical approaches, both frequentist and Bayesian, have been proposed to answer these questions. Results: Here we present a Python package, ABC-SysBio, that implements parameter inference and model selection for dynamical systems in an approximate Bayesian computation (ABC) framework. ABC-SysBio combines three algorithms: ABC rejection sampler, ABC SMC for parameter inference and ABC SMC for model selection. It is designed to work with models written in Systems Biology Markup Language (SBML). Deterministic and stochastic models can be analyzed in ABC-SysBio

    A large-scale stochastic spatiotemporal model for Aedes albopictus-borne chikungunya epidemiology

    Get PDF
    Chikungunya is a viral disease transmitted to humans primarily via the bites of infected Aedes mosquitoes. The virus caused a major epidemic in the Indian Ocean in 2004, affecting millions of inhabitants, while cases have also been observed in Europe since 2007. We developed a stochastic spatiotemporal model of Aedes albopictus-borne chikungunya transmission based on our recently developed environmentally-driven vector population dynamics model. We designed an integrated modelling framework incorporating large-scale gridded climate datasets to investigate disease outbreaks on Reunion Island and in Italy. We performed Bayesian parameter inference on the surveillance data, and investigated the validity and applicability of the underlying biological assumptions. The model successfully represents the outbreak and measures of containment in Italy, suggesting wider applicability in Europe. In its current configuration, the model implies two different viral strains, thus two different outbreaks, for the two-stage Reunion Island epidemic. Characterisation of the posterior distributions indicates a possible relationship between the second larger outbreak on Reunion Island and the Italian outbreak. The model suggests that vector control measures, with different modes of operation, are most effective when applied in combination: adult vector intervention has a high impact but is short-lived, larval intervention has a low impact but is long-lasting, and quarantining infected territories, if applied strictly, is effective in preventing large epidemics. We present a novel approach in analysing chikungunya outbreaks globally using a single environmentally-driven mathematical model. Our study represents a significant step towards developing a globally applicable Ae. albopictus-borne chikungunya transmission model, and introduces a guideline for extending such models to other vector-borne diseases

    ABC-SysBio—approximate Bayesian computation in Python with GPU support

    Get PDF
    Motivation: The growing field of systems biology has driven demand for flexible tools to model and simulate biological systems. Two established problems in the modeling of biological processes are model selection and the estimation of associated parameters. A number of statistical approaches, both frequentist and Bayesian, have been proposed to answer these questions

    Cyprus women's health research (COHERE) initiative: determining the relative burden of women's health conditions and related co-morbidities in an Eastern Mediterranean population

    Get PDF
    Background: There is lack of population level data on prevalence and distribution of common benign women's health conditions such as endometriosis, uterine fibroids, polycystic ovary syndrome from the Eastern Mediterranean region despite their significant consequences on quality of life. In particular, there is complete absence of any health statistics from Northern Cyprus, which is an emerging region in Europe. The Cyprus Women's Health Research (COHERE) Initiative is the first large-scale cross-sectional study in the region, aiming to determine the relative burden of benign women's health conditions and related co-morbidities in women living in Northern Cyprus. Methods: The COHERE Initiative is a cross-sectional study aiming to recruit 8000 women aged 18 55 years and residing for at least the past 5 years in Northern Cyprus. The study is composed of two main steps: (1) Baseline recruitment, including (i) completion of a detailed health questionnaire, which is an expanded version of the World Endometriosis Research Foundation (WERF) Endometriosis Phenome Harmonisation Project (EPHect) standardised questionnaire, including questions on demographics, menstrual history, hormone use, pregnancy, pain (pelvic pain, bladder and bowel pain, migraine), medical history, family history of illnesses, medication use, life-style factors in relation to a wide range of reproductive and endocrine conditions, resource use (ii) measurement of weight, height, waist/hip circumference and blood pressure, (iii) collection of saliva samples for genotyping. (2) Gynaecology clinic follow up, including a pelvic ultrasound scan (USS). There is also a follow-up food frequency questionnaire (FFQ) targeted to all women taking part in the baseline recruitment with an aim to collect more detailed data on dietary habits. Discussion: The COHERE Initiative will generate prevalence rates for conditions, define the clinical profiles for women's health conditions, and estimate the economic burden of these conditions in Northern Cyprus. The results will also provide insights into the current status of health-care among women living in a currently under-investigated region. The genetic findings will inform future gene mapping studies for investigation of the heritable component of conditions in this population/region. Moreover, the results will be compared with other centres collecting data using EPHect tools globally and will help determine population differences and similarities in disease patterns and clinical profiles. The COHERE Initiative will serve as a resource to conduct hypothesis-driven follow-up studies investigating effect of the Mediterranean life-style' as well as genetic factors on common benign women's health conditions that maybe specific to Eastern Mediterranean populations

    What Can Causal Networks Tell Us about Metabolic Pathways?

    Get PDF
    Graphical models describe the linear correlation structure of data and have been used to establish causal relationships among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models can recapitulate the architecture of an underlying biological processes is not well understood. We consider metabolic networks with known stoichiometry to address the fundamental question: “What can causal networks tell us about metabolic pathways?”. Using data from an Arabidopsis BaySha population and simulated data from dynamic models of pathway motifs, we assess our ability to reconstruct metabolic pathways using graphical models. Our results highlight the necessity of non-genetic residual biological variation for reliable inference. Recovery of the ordering within a pathway is possible, but should not be expected. Causal inference is sensitive to subtle patterns in the correlation structure that may be driven by a variety of factors, which may not emphasize the substrate-product relationship. We illustrate the effects of metabolic pathway architecture, epistasis and stochastic variation on correlation structure and graphical model-derived networks. We conclude that graphical models should be interpreted cautiously, especially if the implied causal relationships are to be used in the design of intervention strategies

    A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation.

    Get PDF
    As modeling becomes a more widespread practice in the life sciences and biomedical sciences, researchers need reliable tools to calibrate models against ever more complex and detailed data. Here we present an approximate Bayesian computation (ABC) framework and software environment, ABC-SysBio, which is a Python package that runs on Linux and Mac OS X systems and that enables parameter estimation and model selection in the Bayesian formalism by using sequential Monte Carlo (SMC) approaches. We outline the underlying rationale, discuss the computational and practical issues and provide detailed guidance as to how the important tasks of parameter inference and model selection can be performed in practice. Unlike other available packages, ABC-SysBio is highly suited for investigating, in particular, the challenging problem of fitting stochastic models to data. In order to demonstrate the use of ABC-SysBio, in this protocol we postulate the existence of an imaginary reaction network composed of seven interrelated biological reactions (involving a specific mRNA, the protein it encodes and a post-translationally modified version of the protein), a network that is defined by two files containing 'observed' data that we provide as supplementary information. In the first part of the PROCEDURE, ABC-SysBio is used to infer the parameters of this system, whereas in the second part we use ABC-SysBio's relevant functionality to discriminate between two different reaction network models, one of them being the 'true' one. Although computationally expensive, the additional insights gained in the Bayesian formalism more than make up for this cost, especially in complex problems
    corecore