21 research outputs found

    Reconstruction Control of Magnetic Properties during Epitaxial Growth of Ferromagnetic Mn_3-δGa on Wurtzite GaN(0001)

    Get PDF
    Binary ferromagnetic Mn_3-δGa (1.2<3-δ≤1.5) crystalline thin films have been epitaxially grown on wurtzite GaN(0001) surfaces using rf N-plasma molecular beam epitaxy. The film structure is face-centered tetragonal with CuAu type-I (L1_0) ordering with (111) orientation. The in-plane epitaxial relationship to GaN is nearly ideal with [11̅ 0]_MnGa∥[11̅ 00]_GaN and [112̅ ]_MnGa∥[112̅ 0]_GaN. We observe magnetic anisotropy along both the in-plane and out-of-plane directions. The magnetic moments are found to depend on the Mn/(Mn+Ga) flux ratio and can be controlled by observation of the surface reconstruction during growth, which varies from 1×1 to 2×2 with increasing Mn stoichiometry

    Tutorial on Chemical Pressure Analysis: How Atomic Packing Drives Laves/Zintl Intergrowth in K3Au5Tl

    No full text
    The tight atomic packing generally exhibited by alloys and intermetallics can create the impression of their being composed of hard spheres arranged to maximize their density. As such, the atomic size factor has historically been central to explanations of the structural chemistry of these systems. However, the role atomic size plays structurally has traditionally been inferred from empirical considerations. The recently developed DFT-Chemical Pressure (CP) analysis has opened a path to investigating these effects with theory. In this article, we provide a step-by-step tutorial on the DFT-CP method for non-specialists, along with advances in the approach that broaden its applicability. A new version of the CP software package is introduced, which features an interactive system that guides the user in preparing the necessary electronic structure data and generating the CP scheme, with the results being readily visualized with a web browser (and easily incorporated into websites). For demonstration purposes, we investigate the origins of the crystal structure of K3Au5Tl, which represents an intergrowth of Laves and Zintl phase domains. Here, CP analysis reveals that the intergrowth is supported by complementary CP features of NaTl-type KTl and MgCu2-type KAu2 phases. In this way, K3Au5Tl exemplifies how CP effects can drive the merging for geometrical motifs derived from different families of intermetallics through a mechanism referred to as epitaxial stabilization

    Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy

    No full text
    <p>We reported a simple polydopamine (PDA)-based surface modification method to prepare novel targeted doxorubicin-loaded mesoporous silica nanoparticles and peptide CSNRDARRC conjugation (DOX-loaded MSNs@PDA-PEP) for enhancing the therapeutic effects on bladder cancer. Drug-loaded NPs were characterized in terms of size, size distribution, zeta potential, transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area and drug loading content. <i>In vitro</i> drug release indicated that DOX-loaded MSNs@PDA and MSNs@PDA-PEP had similar release kinetic profiles of DOX. The PDA coating well controlled DOX release and was highly sensitive to pH value. Confocal laser scanning microscopy (CLSM) showed that drug-loaded MSNs could be internalized by human bladder cancer cell line HT-1376, and DOX-loaded MSNs@PDA-PEP had the highest cellular uptake efficiency due to ligand–receptor recognition. The antitumor effects of DOX-loaded nanoparticles were evaluated by the MTT assay <i>in vitro</i> and by a xenograft tumor model <i>in vivo</i>, demonstrating that targeted nanocarriers DOX-loaded MSNs@PDA-PEP were significantly superior to free DOX and DOX-loaded MSNs@PDA. The novel DOX-loaded MSNs@PDA-PEP, which specifically recognized HT-1376 cells, can be used as a potential targeted drug delivery system for bladder cancer therapy.</p

    OsAGO2

    No full text
    corecore