804 research outputs found

    Nondestructive testing techniques used in analysis of honeycomb structure bond strength

    Get PDF
    DOT /Driver-Displacement Oriented Transducer/, applicable to both lap shear type application and honeycomb sandwich structures, measures the displacement of the honeycomb composite face sheet. It incorporates an electromagnetic driver and a displacement measuring system into a single unit to provide noncontact bond strength measurements

    Atomic-scale structure of the SrTiO3(001)-c(6x2) reconstruction: Experiments and first-principles calculations

    Get PDF
    The c(6x2) is a reconstruction of the SrTiO3(001) surface that is formed between 1050-1100oC in oxidizing annealing conditions. This work proposes a model for the atomic structure for the c(6x2) obtained through a combination of results from transmission electron diffraction, surface x-ray diffraction, direct methods analysis, computational combinational screening, and density functional theory. As it is formed at high temperatures, the surface is complex and can be described as a short-range ordered phase featuring microscopic domains composed of four main structural motifs. Additionally, non-periodic TiO2 units are present on the surface. Simulated scanning tunneling microscopy images based on the electronic structure calculations are consistent with experimental images

    Emergent Strain of Human Adenovirus Endemic in Iowa

    Get PDF
    We evaluated 76 adenovirus type 7 (Ad7) isolates collected in Iowa from 1992 to 2002 and found that genome type Ad7d2 became increasingly prevalent. By 2002, it had supplanted all other Ad7 genome types. The association of Ad7d2 with severe illness and death calls for heightened public health concern

    Molecular Epidemiology of Adenovirus Type 7 in the United States, 1966–20001

    Get PDF
    Genetic variation among 166 isolates of human adenovirus 7 (Ad7) obtained from 1966 to 2000 from the United States and Eastern Ontario, Canada, was determined by genome restriction analysis. Most (65%) isolates were identified as Ad7b. Two genome types previously undocumented in North America were also identified: Ad7d2 (28%), which first appeared in 1993 and was later identified throughout the Midwest and Northeast of the United States and in Canada; and Ad7h (2%), which was identified only in the U.S. Southwest in 1998 and 2000. Since 1996, Ad7d2 has been responsible for several civilian outbreaks of Ad7 disease and was the primary cause of a large outbreak of respiratory illness at a military recruit training center. The appearance of Ad7d2 and Ad7h in North America represents recent introduction of these viruses from previously geographically restricted areas and may herald a shift in predominant genome type circulating in the United States

    Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration

    Get PDF
    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethys-mography of supine health male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n equals 6) and during placebo infusion (n equals 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 plus or minus 4 to 2,568 plus or minus 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion; mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3 percent respectively, relative to pre-infusion baseline values (p is less than 0.05). Mean calf filtration, however was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20 percent with ANP infusion, wheras blood pressure was unchanged. Calf conductance (blood flow/arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, phamacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchic sites or both, while having the opposite effect in the leg

    Control of an Outbreak of Human Parainfluenza Virus 3 in Hematopoietic Stem Cell Transplant Recipients

    Get PDF
    Human parainfluenza virus 3 (HPIV3) infection can cause significant morbidity and mortality in patients undergoing hematopoietic stem cell transplantation (HSCT). There are no standard guidelines for the prevention and control of HPIV3 in the outpatient setting. After 2 HSCT inpatients diagnosed with HPIV3 were noted to have had multiple recent HSCT outpatient clinic (OPC) visits, an investigation of policy and procedures in the HSCT OPC was undertaken, and active surveillance for respiratory viral illness was instituted in the at-risk HSCT population. Between July 19 and August 30, 2005, 13 patients were diagnosed with HPIV3 infection. Morbidity in affected patients was significant, and mortality was high (38.5%) and not affected by antiviral therapy. Molecular typing identified several genetically distinct groups of the hemagglutinin-neuraminidase gene of the 11 available isolates. Based on sequence relatedness among the isolates and the demographic and exposure history of the patients, in many of these cases HPIV3 infection likely was acquired in the HSCT OPC. The major infection control interventions were introduced between August 20 and August 24. An epidemic curve revealed that HPIV3 infection frequency peaked between August 17 and August 26, with no cases identified after August 30. Prompt attention and focus on infection control interventions were associated with a rapid decrease in the number of incident cases. Policies and procedures regarding patients with respiratory viral illnesses in HSCT OPC populations should be formulated and universally reinforced with HSCT clinic staff to prevent the spread of these infections

    CODE-1 : moored array and large-scale data report

    Get PDF
    The Coastal Ocean Dynamics Experiment (CODE) was undertaken to identify and study the important dynamical processes which govern the wind-driven motion of coastal water over the continental shelf. The initial effort in this multi-year, multi-institutional research program was to obtain high-quality data sets of all the relevant physical variables needed to construct accurate kinematic and dynamic descriptions of the response of shelf water to strong wind forcing in the 2 to 10 day band. A series of two small-scale, densely-instrumented field experiments of approximately four months duration (called CODE-1 and CODE-2) were designed to explore and to determine the kinematics and momentum and heat balances of the local wind-driven flow over a region of the northern California shelf which is characterized by both relatively simple bottom topography and large wind stress events in both winter and summer. A more lightly instrumented, long-term, large-scale component was designed to help separate the local wind-driven response in the region of the small-scale experiments from motions generated either offshore by the California Current system or in some distant region along the coast, and also to help determine the seasonal cycles of the atmospheric forcing, water structure, and coastal currents over the northern California shelf. The first small-scale experiment (CODE-1) was conducted between April and August, 1981 as a pilot study in which primary emphasis was placed on characterizing the wind-driven "signal" and the "noise" from which this signal must be extracted. In particular, CODE-1 was designed to identify the key features of the circulation and its variability over the northern California shelf and to determine the important time and length scales of the wind-driven response. This report presents a basic description of the moored array data and some other Eulerian data collected during CODE-1. A brief description of the CODE-1 field program is presented first, followed by a description of the common data analysis procedures used to produce the various data sets presented here. Then basic descriptions of the following data sets are presented: (a) the coastal and moored meteorological measurements, (b) the moored current measurements, (c) the moored temperature and conductivity observations, (d) the bottom pressure measurements, and (e) the wind and adjusted coastal sea level observations obtained as part of the CODE-1 large-scale component.Prepared for the National Science Foundation under Grant OCE 80-14941

    Theoretical study of the absorption spectra of the lithium dimer

    Get PDF
    For the lithium dimer we calculate cross sections for absorption of radiation from the vibrational-rotational levels of the ground X [singlet Sigma g +] electronic state to the vibrational levels and continua of the excited A [singlet Sigma u +] and B [singlet Pi u] electronic states. Theoretical and experimental data are used to characterize the molecular properties taking advantage of knowledge recently obtained from photoassociation spectroscopy and ultra-cold atom collision studies. The quantum-mechanical calculations are carried out for temperatures in the range from 1000 to 2000 K and are compared with previous calculations and measurements.Comment: 20 pages, revtex, epsf, 6 fig
    corecore