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Summary: Atrial natriuretic peptide (ANP) is produced
and secreted by atrial cells. We measured calf capillary
filtration rate with prolonged venous-occlusion plethys-
mography of supine healthy male subjects during phar-
macologic infusion of ANP (48 pmol/kg/min for 15 min; n
= 6) and during placebo infusion (n = 7). Results during
infusions were compared to prior control measurements.
ANP infusion increased plasma [ANP] from 30 -+ 4 to
2,568 + 595 pmol/L. Systemic hemoconcentration oc-
curred during ANP infusion: mean hematocrit and plasma
colloid osmotic pressure increased 4.6 and 11.3%, respec-
tively, relative to preinfusion baseline values (p < 0.05).
Mean calf filtration, however, was significantly reduced

from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate

increased 20% with ANP infusion, whereas blood pres-
sure was unchanged. Calf conductance (blood flow/
arterial pressure) and venous compliance were unaffected
by ANP infusion. Placebo infusion had no effect relative
to prior baseline control measurements. Although ANP
induced systemic capillary filtration, in the calf, filtration
was reduced with ANP. Therefore, pharmacologic ANP
infusion enhances capillary filtration from the systemic
circulation, perhaps at upper body or splanchnic sites or
both, while having the opposite effect in the leg. Key
Words: Extracellular fluid--Hemoconcentration--Cap-
illary permeability--Capillary pressure.

Atrial natriuretic peptide (ANP) is a hormone
produced and secreted by atrial myocytes on dis-
tention of the atria (1,2). ANP is an established va-

sodilator, yet may also decrease blood pressure and
cardiac output by reducing intravascular volume
and cardiac filling pressure, because increases in
hematocrit and plasma protein concentration are
commonly associated with ANP administration (3).
Furthermore, ANP-induced hematocrit elevation
has been observed in nephrectomized animals (4,5),
and it occurs too quickly to be attributed solely to
urinary loss. It seems that ANP somehow augments
systemic filtration, or at least discourages reabsorp-
tion of extracellular fluid into the circulation.

Three studies have investigated effects of ANP
on capillary filtration in the human forearm using
prolonged venous-occlusion plethysmography.
Two found that ANP increased forearm capillary
filtration up to 63% (6,7), whereas the third showed
only an insignificant trend toward elevation of fore-

arm filtration (8). Using similar methods, we sought
to determine whether ANP affects capillary filtra-
tion rate as measured in legs of human subjects; we
hypothesized that ANP produces systemic hemo-

concentration in part by increasing calf capillary fil-
tration. We also attempted to relate effects on calf
filtration rate to peripheral arteriolar or venous di-
lation or both, and to two systemic indices of hemo-
concentration, hematocrit and plasma colloid os-
motic pressure. The legs are important sites for
study of capillary filtration because gravitational
pressures in the circulation encourage leg filtration
while upright, and because disease states such as
congestive heart failure may be associated with su-
praphysiologic plasma [ANP] (1) and leg edema.
Prolonged venous occlusion holds venous and cap-
illary pressures relatively constant, which empha-
sizes effects of other Starling forces and permeabil-
ity changes on capillary fluid movement. Con-

versely, effects of factors that alter filtration by
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changing capillary pressure cannot be assessed by

this technique.

METHODS

Subjects
Ten healthy male subjects gave written, informed con-

sent to participate. All were normotensive (arterial blood

pressures _<140/90), unmedicated, did not use tobacco,

and were not obese (life insurance tables). They were 24

to 47 years old (mean, 33 years), 180 -+ 3 cm tall (mean -+
SEM), and they weighed 75.6 -+ 2.9 kg. Female subjects

were not recruited because of potential reproductive risks

of radiation imposed by this research.

ANP and placebo infusions

We used synthetic 26 amino acid met-ANP provided by

Merck, Sharp, and Dohme Research Laboratories. Ly-

ophilized ANP was reconstituted in isotonic saline such

that infusion of the resulting solution at 1.17 ml/min
would deliver 48 pmol ANP/kg/min (150 ng/kg/min) for 15

min to the subject. Placebo infusion consisted of an equal
amount of isotonic saline (17.6 ml total). This research

was approved by the UT Southwestern Human Research

and Radiation Safety Committees, and by the U.S. Food

and Drug Administration (Investigational New Drug num-

ber 30,392).

Plasma ANP radioimmunoassay

Atrial natriuretic peptide-like immunoreactivity in un-
extracted human plasma was measured with radioim-

munoassay (RIA) kits purchased from Research and Di-

agnostic Antibodies, Inc., as previously described (9).

Extraction is not called for by this RIA, and ANP mea-

surement in unextracted plasma is a simpler technique

with which we (9) and others (10) have had consistent and

reliable results previously. Briefly, 7-ml blood samples
were drawn into EDTA tubes after withdrawal of a 2-ml

sample to avoid dilution of blood with the saline in the
catheter. Blood was drawn from the arm before and at the

end of control and infusion periods. The total volume of

blood drawn during a study equaled -40 ml and was re-

placed with an equal volume of isotonic saline. Chilled

blood samples were centrifuged (20 min at 1,800 g), and

plasma aliquots were frozen at -20°C. Duplicate 100-1xl
thawed plasma samples were assayed according to the
RIA kit instructions. The mean correlation coefficient for

standard curves was 0.994. Intra- and interassay coeffi-

cients of variation were 10.3 and 17.4%, respectively.

Percentage recovery by this RIA of ANP added to plasma

samples averaged 83.1 +- 7.2% (SEM) over a range from
1 to 7 fmol ANP/tube.

Resting calf blood flow and conductance

Subdiastolic venous-occlusion plethysmography was
employed with a Mercury-in-silastic strain gauge to mea-
sure calf blood flow. This method is well established and

described in the literature (1 l). The strain gauge is placed

around the point of maximum calf girth, and a pressure

cuff is placed proximal to the knee. Inflation of the cuff to

a subdiastolic pressure (50 mm Hg) impedes venous

drainage from the calf without affecting arterial inflow.

Conductance is calculated by dividing flow by mean ar-

terial pressure and provides an index of local vasodila-
tion.

Calf capillary filtration rate, blood volume, and

vascular compliance
Calf capillary filtration rate, blood volume, and vascu-

lar compliance were measured by combining venous-

occlusion plethysmography (to measure relative calf vol-

ume changes) with blood imaging (99m) technetium-

labeled red blood cells (12) to measure relative calf blood

volume (13,14). Two ml of centrifuge-packed erythro-

cytes (5 min at 1,300 g) were labeled in vitro with 20 mCi

99mTc according to instructions provided with the kit

from Cadema Medical Products, Inc. (Middletown, NY,

U.S.A.). Labeling of centrifuge-packed erythrocytes

avoids undesirable and incidental labeling of plasma pro-

teins. Before injection of the labeled erythrocytes, per-

centage binding of Tc to erythrocytes was quantified by

recentrifuging an aliquot of the labeled sample in a micro-

hematocrit centrifuge and then dividing gamma counts in
the packed cells by counts in cells plus supernatant. Per-

centage of Tc bound to erythrocytes was always >96%
and usually >98%, thereby confirming minimal free and

protein-bound Tc. Tc percentage binding remained at or

above these levels in vivo. A Picker Digital Dyna Gamma

Camera acquired images of both legs. Gamma counts

were corrected for background and decay. One leg, de-

termined at random, was instrumented for venous-

occlusion plethysmography, and the other served as an
unoccluded control.

Plethysmographic calf volume increase during the rapid

arterial inflow phase of venous occlusion (the first

minute, when filtration is assumed to be negligible) cali-

brates the radionuclide blood volume technique (13,14).

Baseline calf blood volume percentage is calculated by

applying the relationship between plethysmographic calf-

volume elevation and gamma counts during the first
minute of occlusion to the preocclusion gamma level (14).

Prolonged venous occlusion consisted of 9 min at 50 mm
Hg. Calf vascular compliance was quantified as the in-
crease in calf blood volume at 3 min of venous occlusion.

Calf capillary filtration rate during venous occlusion

equals elevation of plethysmographic calf volume minus

the elevation of scintigraphic calf blood volume per unit

time (i.e., rate of extravascular volume elevation). Calf

filtration was quantified between 1 and 9 rain of occlu-
sion.

Other dependent variables
Heart rate was determined from ECG. A Narco Bio-

systems PE-300 electrosphygmomanometer indirectly

measured brachial arterial blood pressure. Mean arterial

pressure (MAP) was calculated as:

MAP = DBP + [(SBP - DBP)/3]

We measured hematocrit of unoccluded arm venous

blood with microhematocrit centrifugation. Plasma col-

loid osmotic pressure was measured in 100-1xl samples
with a membrane-exclusion colloid osmometer modified

from Aukland and Johnsen (15). Samples were taken from

those collected for ANP analysis. Plasma colloid osmotic

pressure was not measured in the placebo group, because

hematocrit did not change in that group (see Results).

Protocol

Subjects were instructed to abstain from caffeine, med-

ications, and alcohol for at least 24 h before the study. All

experiments were performed during mid-afternoon in the
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TABLE 1. Influence of ANP infusion on plasma
[ANP], hemodynamics, plasma colloid osmotic

pressure, and calf capillary filtration

Control ANP

ANP (pmol/L) 30 -+4 2568 -+ 595a
HR (beats/min) 61 - 5 73 + 6"
MAP (mm Hg) 78 -+ 3 77 -+ 3
Calf blood volume (vol%) 4.7 - 0.8 5.0 +- 0.7
Conductance

(vol% • 102/min/mm Hg) 3.1 -+0.4 3.8 --- 0.4
Compliance (vol% • 102/mm

Hg) 3.0 +--0.2 3.0 -+ 0.4
Hematocrit (%) 43 +- 1 45 -+ 1_'
Plasma colloid osmotic

pressure (mm Hg) 21.7 - 0.6 24.9 - 1.0_
Calf filtration (vol%/min) 0.15 -+0.03 0.08 -+ 0.02a

Vol%, milliliters per 100ml tissue; ANP, atrial natriuretic pep-
tide; HR, heart rate; MAP, mean arterial pressure.

Values reported as mean -+ SEM, n = 6.
a p < 0.05.

Nuclear Medicine Division of Parkland Memorial Hospi-
tal, Dallas, Texas. Subjects were catheterized in an arm
vein, after which they underwent the erythrocyte radio-
labeling procedure. Subjects were then instrumented
while supine with their legs elevated - 15° from horizontal
(calves 15-20 cm above heart level, to facilitate emptying
of leg veins) and knees slightly bent for comfort. Legs
were supported with pillows and foam pads such that the
calves were parallel to the gamma camera face and as
close to it as possible without touching it. Subjects as-
sumed this position -50 min before the beginning of con-
trol data collection and remained so through the study.
After completion of the control venous occlusion/data
collection period (see Calf Capillary Filtration Rate,
Blood Volume, and Vascular Compliance for details), a
20-min period was allowed to ensure recovery from pro-
longed venous occlusion before beginning experimental
data collection. The 9-rain, 50 mm Hg venous occlusion
for placebo or ANP data collection began 6 min after the
onset of infusion, and infusion continued during venous
occlusion (total infusion time = 15 min). Subjects were
awake during data collection.

Statistical analyses
Raw data were coded by one investigator and subse-

quently analyzed by another without access to identifying
information. Paired t tests delineated effects of placebo
infusion (n = 7) and ANP infusion (n = 6) relative to
prior baseline control results for each subject group.
Three subjects were in both placebo and ANP groups.
Independent two-tailed t tests were employed to deter-
mine whether control data for the placebo and ANP sub-
ject groups were similar. In addition, correlation analysis
determined significance of relationships between relevant
variable pairs within protocol periods (16). ABstat proce-
dures performed all statistical tests, with significance set
at 0.05 (Anderson-Bell, Inc.). Results are expressed as
means --- SEM.

RESULTS

Intravenous infusion of ANP at 48 pmol/kg/min
for 15 min (a cumulative dose of 0.72 nmol/kg) ele-
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FIG. 1. Responses of individual subject's calf filtration rates
to ANP infusion relative to control. Vol% equals milliliters per
100 ml tissue.

vated plasma ANP concentrations -85-fold over
preinfusion control levels (Table 1). This pharma-
cologic ANP infusion increased mean hematocrit 2
hematocrit units (%) and mean plasma colloid os-

motic pressure 3.2 mm Hg relative to prior control
values (Table 1). Mean capillary filtration rate in the
calf, however, decreased 47% during ANP infusion.
Individually, five of the six subjects who received
ANP infusion exhibited a clear depression of calf
filtration with ANP relative to preinfusion control
values (Fig. 1). The single subject whose calf filtra-
tion increased with ANP had the lowest control

value and was our oldest subject (47 years). Calf
filtration related inversely with plasma colloid os-
motic pressure during control data collection (R 2 =

0.846, Fig. 2), but this relationship became insignif-
icant during ANP infusion (R 2 = 0.484, p = 0.125).

ANP infusion tended to increase calf blood flow

per unit arterial pressure (conductance) and also
tended to increase preocclusion calf-blood volume,
yet mean arterial pressure was unaffected by ANP
(Table 1). Heart rate was elevated 20% during ANP
infusion relative to prior control levels (Table 1).
Calf conductance correlated positively with plasma
[ANP] during preinfusion control periods in both
ANP and placebo subject groups (r = 0.796, Fig. 3).
Calf venous compliance was unaffected by ANP in-
fusion (Table 1). Control data for placebo and ANP

A 0.3

E
×

0.2

2

--_ 0.1

..a
0.0

15

I I

20 25
Plasma oneotic pressure (mmHg)

3O

FIG. 2. Relationship between calf filtration rate and plasma
colloid osmotic pressure during preinfusion control data col-
lection in the six subjects who received ANP infusion. R2 =

0.846, p = 0.009. Vol% equals milliliters per 100 ml tissue.
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FIG. 3. Relationship between calf conductance and plasma
[ANP]during preinfusion control data collection. Three sub-
jects were in both placebo and ANP groups; data points for
those subjectsrepresent averagesof data from their two con-
trol periods, n = 10, R2 = 0.634, p = 0.006. Vol% equals
milliliters per 100 ml tissue.

infusion groups were statistically similar. Placebo
infusion had no effect on any variable relative to
prior control measurements (Table 2).

DISCUSSION

Hematocrit and plasma colloid osmotic pressure
findings confirm that a pharmacologic ANP stimu-
lus produces hemoconcentration, in accordance
with the literature (1,3,17). Weidmann et al. (3)
pointed out that ANP-induced hemoconcentration
occurs more quickly than if diuresis were responsi-
ble. Our findings support their conclusion. A
plasma volume reduction of -200 ml occurred dur-
ing the 15-min ANP infusion we employed (esti-
mated from hematocrit increase, assuming blood
volume of -5 L; 5,9). To excrete this volume over
such a short time would require a urine production
rate of 13 ml/min, which is unlikely. We can con-
clude, therefore, that ANP enhanced fluid move-
ment from plasma to interstitium in this study.

Although we expected ANP to increase leg cap-
illary filtration in accordance with the systemic
hemoconcentration we observed, the opposite ac-
tually occurred: ANP infusion reduced leg filtra-
tion. This observation disagrees with prior studies
in the human forearm, which reported either en-
hanced filtration (6,7) or a tendency toward such (8)
during ANP infusion. It is unlikely that differences
in direction of response between this and earlier
studies could be explained by differences in the
peptides employed. Whereas one of the earlier stud-
ies did not report the ANP type used (6), the two
other antecedent studies (7,8) used 28 amino acid
human (methionine) ANP. We used 26-amino acid
human (methionine) ANP, which may be less po-
tent than the larger peptide, yet exerts the same
actions (1).

Under control conditions, subjects with greater
plasma colloid osmotic pressures exhibited reduced
calf capillary filtration (Fig. 2), as expected from

Starling's filtration equation (18,19). Further in-
creases in colloid osmotic pressure during ANP in-
fusion would reduce subsequent occlusion-induced
calf capillary filtration. However, no significant re-
lationship existed between plasma colloid osmotic
pressure and calf filtration during ANP infusion.
The plasma colloid osmotic pressure increase we
saw with ANP would reduce calf filtration only 0,02
vol%/min with all else held constant, according to
Starling's filtration equation (18,19). Mean calf fil-
tration actually decreased 0.07 ml/100 ml/min.
Groban et al. (6) noted ANP-induced elevation of
forearm filtration despite significant increases in

plasma protein concentration. Therefore, ANP-

induced colloid osmotic pressure elevation cannot
explain the depression of leg filtration we observed.

Fundamental differences may exist in upper and
lower body filtration responses to ANP. It is possi-
ble that ANP enhances fluid transudation from the

upper body or visceral microcirculation or both,
while favoring reabsorption of interstitial fluid from
the muscle and skin of the legs. This possibility
seems reasonable in light of the biomechanical dis-
advantage cursorial organisms experience by add-
ing weight to the leg (20). Other differences exist
between human lower and upper body circulation.
For example, capillary basement membranes are
thicker (21), and tissues (22) and veins (23) are less

compliant in the lower body than in the upper body.
However, resting forearm and leg capillary hydrau-
lic conductance are similar, as measured with su-
pine venous occlusion plethysmography (24). Base-
line calf filtration values in our study agree well
with values from the literature (13,14,25,26).

Alternative mechanisms exist to explain elevated
systemic and forearm filtration induced by ANP.
First, increased capillary hydrostatic pressure
would oppose the reabsorptive force generated by
plasma proteins (5,27,28). Second, increased capil-
lary permeability to various extracellular fluid con-
stituents, including protein, would favor capillary
filtration (2%32). These mechanisms are not mutu-

ally exclusive and could occur separately or to-
gether in specific vascular beds. Venous occlusion
hypothetically holds capillary pressure constant. If

TABLE 2. Influence of placebo infusion on plasma
[ANP], hemodynamics and calf capillary filtration

Control Placebo

ANP (pmol/L) 21 + 2 22 + 2

HR (beats/min) 66 ± 4 68 -+ 4

MAP (mm Hg) 88 ± 4 86 ± 4

Calf blood volume (vol%) 3.8 ± 0.5 3.8 ± 0.4

Conductance (vol% • 102/min/mm Hg) 2.4 ± 0.3 2.5 ± 0.5

Compliance (vol% • 102/mm Hg) 2.8 - 0.2 2.6 + 0.4

Hematocrit (%) 44 --- 1 44 ± 1

Calf filtration (vol%/min) 0.11 ± 0.02 0.09 ± 0.01

ANP, atrial natriuretic peptide; vol%, milliliters per 100 ml tissue; HR,

heart rate; MAP, mean arterial pressure.

Values reported as mean ± SEM, n = 7, a = 0.05.
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ANP increases filtration by elevating capillary pres-

sure, then it should be rendered ineffective during

venous occlusion. If, however, the peptide acts by

increasing capillary permeability, then ANP should

necessarily increase occlusion-induced filtration

(6,7). Our results, therefore, suggest that ANP ac-

tually reduces capillary permeability in the legs,

while increasing it elsewhere.

ANP infusion often increases heart rate (1,17,33).

Most investigators view this finding as a reflexive

response to ANP-induced systemic hypotension,

because no direct chronotropic (or inotropic) ef-

fects of ANP have been conclusively identified (1,

3,34). The positive relationship we observed be-

tween plasma [ANP] and calf conductance during

the control period (Fig. 3) suggests that ANP con-

tributes to calf vasomotor control in supine resting

conditions. An increase in calf conductance during

ANP infusion, such as we saw evidence of, is in-

dicative of arteriolar vasodilation, which should re-

duce blood pressure. We may not have observed a

reduction in blood pressure with ANP as compared

to control because the cardiac arm of the carotid

baroreflex defended an already low mean arterial

pressure. (The control MAP mean was 78 mm Hg.)

In summary, we confirmed that a pharmacologic

ANP dose produces hemoconcentration in normal

human males, and that because it occurs so quickly,

this hemoconcentration cannot be solely attributed

to urine production. In spite of this evidence that
ANP does indeed stimulate net movement of fluid

out of the systemic circulation, calf capillary filtra-

tion during venous occlusion was reduced by ANP

infusion. Because venous occlusion "clamps" cap-

illary pressure, we conclude that pharmacologic

ANP administration reduces capillary permeability

in legs of supine human males.
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