200 research outputs found
Il ruolo delle conferenze episcopali nei rapporti con lo stato.
Material incluido en el volumen especial de la revista del Instituto Martín de Azpilcueta, Universidad de Navarra : Ius Canonicum (1999), en honor de Javier Hervada
Reconciliados se puede recordar
Reconciliados se
puede recordar apareció
en el número 5 de
la revista italiana La
nuova Europa
{Rivista internazionale
di cultura).
Además de la entrevista
realizada a Peter
Erdó, recogemos la
carta que el autor
dirigió a Su Santidad
Alexis III, Patriarca
de Moscú y de Rusia.
© La nuova Europa.
Rivista internazionale
di cultura
The role of the muscarinic system in regulating estradiol secretion varies during the estrous cycle: the hemiovariectomized rat model
There is evidence that one gonad has functional predominance. The present study analyzed the acute effects of unilateral ovariectomy (ULO) and blocking the cholinergic system, by injecting atropine sulfate (ATR), on estradiol (E(2)) serum concentrations during the estrous cycle. The results indicate that ULO effects on E(2 )concentrations are asymmetric, vary during the estrous cycle, and partially depend on the cholinergic innervation. Perforation of the left peritoneum resulted in lower E(2 )serum concentrations in the three stages of the estrous cycle. At proestrus, unilateral or bilateral perforation of the peritoneum resulted in lower E(2 )serum concentrations. ULO of the right ovary (left ovary in situ) resulted in significantly higher E(2 )concentrations than animals with ULO of the left ovary (right ovary in situ). ATR treatment to ULO rats on D1 resulted in a significant drop of E(2 )serum concentrations. ULO rats treated with ATR on D2 or P, resulted in an asymmetrical E(2) secretion response; when the right ovary remained in situ an increase in E(2) was observed, and a decrease when the left ovary remained in situ. The results obtained in the present study suggest that each ovary's ability to compensate the secretion of E(2 )from the missing ovary is different and varies during the estrous cycle. The results also suggest that the cholinergic system participates in regulating ovarian E(2 )secretion. Such participation varies according to the ovary remaining in situ and the stage of the estrous cycle of the animal. The results agree with previously stated hypothesis of a neural pathway arising from the peritoneum that participates in regulating E(2 )secretion, and also supports the idea of cross-talk between the ovaries, via a neural communication, that modulates E(2 )secretion
Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans: a systematic review
Gamma-aminobutyric acid (GABA) is a non-proteinogenic amino acid and is the main inhibitory neurotransmitter in the mammalian brain. GABA's stress-reducing, and sleep enhancing effects have been established. However, although several human clinical trials have been conducted, results regarding the role of natural and/or biosynthetic oral GABA intake on stress and sleep are mixed. We performed a systematic review to examine whether natural and/or biosynthetic oral GABA intake has an effect on stress and sleep. We systematically searched on PubMed database for studies published up to February 2020 following PRISMA guidelines. Only placebo-controlled human trials that assessed stress, sleep, and related psychophysiological outcomes as a response to natural GABA (i.e., GABA that is present naturally in foods) or biosynthetic GABA (i.e., GABA that is produced via fermentation) intake were included. Fourteen studies met the criteria and were included in the systematic review. Although more studies are needed before any inferences can be made about the efficacy of oral GABA consumption on stress and sleep, results show that there is limited evidence for stress and very limited evidence for sleep benefits of oral GABA intake
Quantitative study of the effects of denervation and castration on the levator ani muscle of the rat
The levator ani muscle (LA) of the rat is highly androgen-sensitive and, like all skeletal muscles, deteriorates structurally and functionally when denervated. In order to elucidate the interplay of neural and endocrine influences, the separate and combined effects of denervation and castration on myofiber cross-sectional area and nuclear populations were quantitatively studied. In one group of 4-month-old male rats (A), the LA was denervated. Another group (B) was surgically castrated and a third group (C) was both denervated and castrated. The control rats (D) remained both gonad- and nerve-intact. After two months, the LA was obtained for myofiber and nuclear enumeration, cross-sectional area and satellite cell frequency determination. In the denervated muscle of gonad-intact rats (Group A), myofiber cross-sectional area was markedly diminished (265.84 ± 11.38μm 2 ; compared with controls [Group D]: 1519.98 ± 79.41μm 2 ; P < 0.05). Satellite cell nuclei, as a percentage of total sublaminar nuclei (i.e., satellite cell ratio), increased significantly (4.26%, from a control value of 1.91%). Castration alone (Group B) resulted in pronounced myofiber atrophy (mean cross-sectional area: 754.03 ± 89.63μm 2 ) but had no significant effect on satellite cell ratio (2.36%). The combination of castration and denervation (Group C) elicited the same degree of myofiber atrophy as denervation alone (Group A) but had no significant impact on satellite cell ratio. Instead, the nuclear count per myofiber declined to about a third of the control level (300.5 ± 38.49 compared with 861.7 ± 24.8; P < 0.05). The results indicate that the atrophic effects of denervation and castration on the LA are non-synergistic and mechanistically similar. They also show that the inability of satellite cells to respond mitotically to the withdrawal of neural input under disandrogenized conditions is a factor in the myonuclear depletion of the denervated muscle of castrated rats. Anat Rec 255:324–333, 1999. © 1999 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34285/1/8_ftp.pd
The Tumorigenicity of Mouse Embryonic Stem Cells and In Vitro Differentiated Neuronal Cells Is Controlled by the Recipients' Immune Response
Embryonic stem (ES) cells have the potential to differentiate into all cell types and are considered as a valuable source of cells for transplantation therapies. A critical issue, however, is the risk of teratoma formation after transplantation. The effect of the immune response on the tumorigenicity of transplanted cells is poorly understood. We have systematically compared the tumorigenicity of mouse ES cells and in vitro differentiated neuronal cells in various recipients. Subcutaneous injection of 1×106 ES or differentiated cells into syngeneic or allogeneic immunodeficient mice resulted in teratomas in about 95% of the recipients. Both cell types did not give rise to tumors in immunocompetent allogeneic mice or xenogeneic rats. However, in 61% of cyclosporine A-treated rats teratomas developed after injection of differentiated cells. Undifferentiated ES cells did not give rise to tumors in these rats. ES cells turned out to be highly susceptible to killing by rat natural killer (NK) cells due to the expression of ligands of the activating NK receptor NKG2D on ES cells. These ligands were down-regulated on differentiated cells. The activity of NK cells which is not suppressed by cyclosporine A might contribute to the prevention of teratomas after injection of ES cells but not after inoculation of differentiated cells. These findings clearly point to the importance of the immune response in this process. Interestingly, the differentiated cells must contain a tumorigenic cell population that is not present among ES cells and which might be resistant to NK cell-mediated killing
Effects of histocompatibility and host immune responses on the tumorigenicity of pluripotent stem cells
Pluripotent stem cells hold great promises for regenerative medicine. They might become useful as a universal source for a battery of new cell replacement therapies. Among the major concerns for the clinical application of stem cell-derived grafts are the risks of immune rejection and tumor formation. Pluripotency and tumorigenicity are closely linked features of pluripotent stem cells. However, the capacity to form teratomas or other tumors is not sufficiently described by inherited features of a stem cell line or a stem cell-derived graft. The tumorigenicity always depends on the inability of the recipient to reject the tumorigenic cells. This review summarizes recent data on the tumorigenicity of pluripotent stem cells in immunodeficient, syngeneic, allogeneic, and xenogeneic hosts. The effects of immunosuppressive treatment and cell differentiation are discussed. Different immune effector mechanisms appear to be involved in the rejection of undifferentiated and differentiated cell populations. Elements of the innate immune system, such as natural killer cells and the complement system, which are active also in syngeneic recipients, appear to preferentially reject undifferentiated cells. This effect could reduce the risk of tumor formation in immunocompetent recipients. Cell differentiation apparently increases susceptibility to rejection by the adaptive immune system in allogeneic hosts. The current data suggest that the immune system of the recipient has a major impact on the outcome of pluripotent stem cell transplantation, whether it is rejection, engraftment, or tumor development. This has to be considered when the results of experimental transplantation models are interpreted and even more when translation into clinics is planned
- …