334 research outputs found

    Minerals of Indiana

    Get PDF
    Indiana Geological Survey Bulletin 18Undisturbed Paleozoic sediments form the bedrock surface of Indiana. The most common minerals in these sediments are calcite, clay minerals, dolomite, glauconite, goethite, gypsum, hematite, limonite (hydrous iron oxides), quartz, and siderite. Found less abundantly are anhydrite, apatite, aragonite, barite, celestite, copiapite, epsomite, fluorite, marcasite, melanterite, millerite, pyrite, pyrrhotite, smythite, sphalerite, strontianite, sulfur, and wad. These minerals occur in veins and cavities; along bedding, joint, and fracture surfaces and stylolite seams; and in geodes in limestones. Reported and observed locations and modes of occurrence are presented for each of the minerals except most clay and minerals. The more unusual minerals that occur in glacial materials of Indiana, native copper, diamond, galena, native gold, and native silver, are described in full. A literature study was the basis for a brief discussion of the history of Indiana minerals. The present report questions the reported occurrences in Indiana of native bismuth, graphite, malachite, moissanite, nitromagnesite, and stibnite.Indiana Department of Conservatio

    High-Resolution spectroscopy of the low-mass X-ray binary EXO 0748-67

    Full text link
    We present initial results from observations of the low-mass X-ray binary EXO 0748-67 with the Reflection Grating Spectrometer on board the XMM-Newton Observatory. The spectra exhibit discrete structure due to absorption and emission from ionized neon, oxygen, and nitrogen. We use the quantitative constraints imposed by the spectral features to develop an empirical model of the circumsource material. This consists of a thickened accretion disk with emission and absorption in the plasma orbiting high above the binary plane. This model presents challenges to current theories of accretion in X-ray binary systems.Comment: 5 pages, 4 figures, accepted by A&A letters, XMM special issu

    Emotional Strategies as Catalysts for Cooperation in Signed Networks

    Get PDF
    The evolution of unconditional cooperation is one of the fundamental problems in science. A new solution is proposed to solve this puzzle. We treat this issue with an evolutionary model in which agents play the Prisoner's Dilemma on signed networks. The topology is allowed to co-evolve with relational signs as well as with agent strategies. We introduce a strategy that is conditional on the emotional content embedded in network signs. We show that this strategy acts as a catalyst and creates favorable conditions for the spread of unconditional cooperation. In line with the literature, we found evidence that the evolution of cooperation most likely occurs in networks with relatively high chances of rewiring and with low likelihood of strategy adoption. While a low likelihood of rewiring enhances cooperation, a very high likelihood seems to limit its diffusion. Furthermore, unlike in non-signed networks, cooperation becomes more prevalent in denser topologies.Comment: 24 pages, Accepted for publication in Advances in Complex System

    Simultaneous Absolute Timing of the Crab Pulsar at Radio and Optical Wavelengths

    Full text link
    The Crab pulsar emits across a large part of the electromagnetic spectrum. Determining the time delay between the emission at different wavelengths will allow to better constrain the site and mechanism of the emission. We have simultaneously observed the Crab Pulsar in the optical with S-Cam, an instrument based on Superconducting Tunneling Junctions (STJs) with μ\mus time resolution and at 2 GHz using the Nan\c{c}ay radio telescope with an instrument doing coherent dedispersion and able to record giant pulses data. We have studied the delay between the radio and optical pulse using simultaneously obtained data therefore reducing possible uncertainties present in previous observations. We determined the arrival times of the (mean) optical and radio pulse and compared them using the tempo2 software package. We present the most accurate value for the optical-radio lag of 255 ±\pm 21 μ\mus and suggest the likelihood of a spectral dependence to the excess optical emission asociated with giant radio pulses.Comment: 8 pages; accepted for publication in Astronomy and Astrophysic

    On the "Mandelbrot set" for a pair of linear maps and complex Bernoulli convolutions

    Full text link
    We consider the "Mandelbrot set" MM for pairs of complex linear maps, introduced by Barnsley and Harrington in 1985 and studied by Bousch, Bandt and others. It is defined as the set of parameters λ\lambda in the unit disk such that the attractor AλA_\lambda of the IFS {λz−1,λz+1}\{\lambda z-1, \lambda z+1\} is connected. We show that a non-trivial portion of MM near the imaginary axis is contained in the closure of its interior (it is conjectured that all non-real points of MM are in the closure of the set of interior points of MM). Next we turn to the attractors AλA_\lambda themselves and to natural measures νλ\nu_\lambda supported on them. These measures are the complex analogs of much-studied infinite Bernoulli convolutions. Extending the results of Erd\"os and Garsia, we demonstrate how certain classes of complex algebraic integers give rise to singular and absolutely continuous measures νλ\nu_\lambda. Next we investigate the Hausdorff dimension and measure of AλA_\lambda, for λ\lambda in the set MM, for Lebesgue-a.e. λ\lambda. We also obtain partial results on the absolute continuity of νλ\nu_\lambda for a.e. λ\lambda of modulus greater than 1/2\sqrt{1/2}.Comment: 22 pages, 5 figure
    • …
    corecore