1,250 research outputs found

    Intrinsic dimension estimation for locally undersampled data

    Get PDF
    Identifying the minimal number of parameters needed to describe a dataset is a challenging problem known in the literature as intrinsic dimension estimation. All the existing intrinsic dimension estimators are not reliable whenever the dataset is locally undersampled, and this is at the core of the so called curse of dimensionality. Here we introduce a new intrinsic dimension estimator that leverages on simple properties of the tangent space of a manifold and extends the usual correlation integral estimator to alleviate the extreme undersampling problem. Based on this insight, we explore a multiscale generalization of the algorithm that is capable of (i) identifying multiple dimensionalities in a dataset, and (ii) providing accurate estimates of the intrinsic dimension of extremely curved manifolds. We test the method on manifolds generated from global transformations of high-contrast images, relevant for invariant object recognition and considered a challenge for state-of-the-art intrinsic dimension estimators

    Tip Anchor Flap in Decubital Surgery

    Get PDF
    Anchoring a flap remains a key procedure in decubital surgery because a flap needs to be stable against shearing forces. This allows an early mobilization and undisturbed primary wound healing. This study evaluated a uniform group of eight paraplegic patients with sacral decubital ulcers and covered the lesions using gluteal rotation flaps with a deepithelialized tip to anchor the flap subcutaneously on the contralateral ischial tuber. Initial wound healing and recurrence after one year were evaluated. All but one flap showed uneventful wound healing, and all the flaps presented without any signs of recurrence or instability. The authors suggest that sufficient anchoring using a deepithelialized part of the flap helps to integrate and stabilize sacral rotation flap

    Virtually Abelian Quantum Walks

    Full text link
    We introduce quantum walks on Cayley graphs of non-Abelian groups. We focus on the easiest case of virtually Abelian groups, and introduce a technique to reduce the quantum walk to an equivalent one on an Abelian group with coin system having larger dimension. We apply the technique in the case of two quantum walks on virtually Abelian groups with planar Cayley graphs, finding the exact solution.Comment: 10 pages, 3 figure

    Listeria abdominal endograft infection miming pseudoaneurysm treated with in-situ aortic reconstruction: a case report

    Get PDF
    We report the case of a 72-year old man previously treated with an aortic endograft for an abdominal aortic aneurysm. After 3 years the patient developed a sepsis. Imaging and blood exams detected an endograft infection related to Listeria monocytogenes. Patients underwent endograft removal and in-situ aortic reconstruction with a cryopreserved allograft. A continuous antibacterial therapy has been established. One-month follow-up revealed the absence of clinically relevant infection with patency of the graft and absence of biochemical inflammatory markers

    Posterior Auricular Perichondrial Cutaneous Graft Combined With Cartilage Strip in Nostril Reconstruction

    Get PDF
    Objective: Reconstruction of alar structures of the nose remains difficult. The result has to be not only functional but also aesthetic. Different solutions to reconstruct alar defects are feasible. A good result that meets the specific demands on stability, aesthetics, and stable architecture without shrinkage of the area is not easily achieved. Method: A perichondrial cutaneous graft (PCCG), a graft consisting of a perichondral layer, fatty tissue, and skin that is harvested retroauriculary, is combined with an attached cartilage strip. Case Result: A 72-year-old patient suffering from basal cell carcinoma of the ala of the nose underwent the reconstructive procedure with a good result in 1 year in terms of stability, color match, and graft take. Conclusion: First, a strip of cartilage had been included in a PCCG where tumor resection required sacrifice of more than 50% of the alar rim. The case shows that one can consider a cartilage strip–enhanced PCCG graft to reconstruct alar defects

    Imaging-based representation and stratification of intra-tumor heterogeneity via tree-edit distance

    Get PDF
    Personalized medicine is the future of medical practice. In oncology, tumor heterogeneity assessment represents a pivotal step for effective treatment planning and prognosis prediction. Despite new procedures for DNA sequencing and analysis, non-invasive methods for tumor characterization are needed to impact on daily routine. On purpose, imaging texture analysis is rapidly scaling, holding the promise to surrogate histopathological assessment of tumor lesions. In this work, we propose a tree-based representation strategy for describing intra-tumor heterogeneity of patients affected by metastatic cancer. We leverage radiomics information extracted from PET/CT imaging and we provide an exhaustive and easily readable summary of the disease spreading. We exploit this novel patient representation to perform cancer subtyping according to hierarchical clustering technique. To this purpose, a new heterogeneity-based distance between trees is defined and applied to a case study of prostate cancer. Clusters interpretation is explored in terms of concordance with severity status, tumor burden and biological characteristics. Results are promising, as the proposed method outperforms current literature approaches. Ultimately, the proposed method draws a general analysis framework that would allow to extract knowledge from daily acquired imaging data of patients and provide insights for effective treatment planning
    corecore