55 research outputs found

    Automated detection of missteps during community ambulation in patients with Parkinson’s disease: a new approach for quantifying fall risk in the community setting

    Get PDF
    Background: Falls are a leading cause of morbidity and mortality among older adults and patients with neurological disease like Parkinson’s disease (PD). Self-report of missteps, also referred to as near falls, has been related to fall risk in patients with PD. We developed an objective tool for detecting missteps under real-world, daily life conditions to enhance the evaluation of fall risk and applied this new method to 3 day continuous recordings. Methods: 40 patients with PD (mean age ± SD: 62.2 ± 10.0 yrs, disease duration: 5.3 ± 3.5 yrs) wore a small device that contained accelerometers and gyroscopes on the lower back while participating in a protocol designed to provoke missteps in the laboratory. Afterwards, the subjects wore the sensor for 3 days as they carried out their routine activities of daily living. An algorithm designed to automatically identify missteps was developed based on the laboratory data and was validated on the 3 days recordings. Results: In the laboratory, we recorded 29 missteps and more than 60 hours of data. When applied to this dataset, the algorithm achieved a 93.1% hit ratio and 98.6% specificity. When we applied this algorithm to the 3 days recordings, patients who reported two falls or more in the 6 months prior to the study (i.e., fallers) were significantly more likely to have a detected misstep during the 3 day recordings (p = 0.010) compared to the non-fallers. Conclusions: These findings suggest that this novel approach can be applied to detect missteps during daily life among patients with PD and will likely help in the longitudinal assessment of disease progression and fall risk

    The Effect of Gentamicin-Induced Readthrough on a Novel Premature Termination Codon of CD18 Leukocyte Adhesion Deficiency Patients

    Get PDF
    Leukocyte adhesion deficiency 1 (LAD1) is an inherited disorder of neutrophil function. Nonsense mutations in the affected CD18 (ITB2) gene have rarely been described. In other genes containing such mutations, treatments with aminoglycoside types of antibiotics (e.g., gentamicin) were reported to partially correct the premature protein termination, by induction of readthrough mechanism.Genetic analysis was performed on 2 LAD1 patients. Expression, functional and immunofluorescence assays of CD18 in the patients were used to determine the in-vivo and in-vitro effects of gentamicin-induced readthrough. A theoretical modeling of the corrected CD18 protein was developed to predict the protein function.We found a novel premature termination codon, C562T (R188X), in exon 6 of the CD18 gene that caused a severe LAD1 phenotype in two unrelated Palestinian children. In-vivo studies on these patients' cells after gentamicin treatment showed abnormal adhesion and chemotactic functions, while in-vitro studies showed mislocalization of the corrected protein to the cytoplasm and not to the cell surface. A theoretical modeling of the corrected CD18 protein suggested that the replacement of the wild type arginine by gentamicin induced tryptophan at the position of the nonsense mutation, although enabled the expression of the entire CD18 protein, this was not sufficient to stabilize the CD18/11 heterodimer at the cell surface.A novel nonsense mutation in the CD18 gene causing a complete absence of CD18 protein and severe LAD1 clinical phenotype is reported. Both in vivo and in vitro treatments with gentamicin resulted in the expression of a corrected full-length dysfunctional or mislocalized CD18 protein. However, while the use of gentamicin increased the expression of CD18, it did not improve leukocyte adhesion and chemotaxis. Moreover, the integrity of the CD18/CD11 complex at the cell surface was impaired, due to abnormal CD18 protein and possibly lack of CD11a expression

    A quality control check to ensure comparability of stereophotogrammetric data between session and systems

    Get PDF
    Optoelectronic stereophotogrammetric (SP) systems are widely used in human movement research for clinical diagnostics, interventional applications, and as a reference system for validating alternative technologies. Regardless of the application, SP systems exhibit different random and systematic errors depending on camera specifications, system setup and laboratory environment, which hinders comparing SP data between sessions and across different systems. While many methods have been proposed to quantify and report the errors of SP systems, they are rarely utilized due to their complexity and need for additional equipment. In response, an easy-to-use quality control (QC) check has been designed that can be completed immediately prior to a data collection. This QC check requires minimal training for the operator and no additional equipment. In addition, a custom graphical user interface ensures automatic processing of the errors in an easy-to-read format for immediate interpretation. On initial deployment in a multicentric study, the check (i) proved to be feasible to perform in a short timeframe with minimal burden to the operator, and (ii) quantified the level of random and systematic errors between sessions and systems, ensuring comparability of data in a variety of protocol setups, including repeated measures, longitudinal studies and multicentric studies

    Quantification of daily-living gait quantity and quality using a wrist-worn accelerometer in Huntington's Disease

    Get PDF
    Background: Huntington's disease (HD) leads to altered gait patterns and reduced daily-living physical activity. Accurate measurement of daily-living walking that takes into account involuntary movements (e.g. chorea) is needed. Objective: To evaluate daily-living gait quantity and quality in HD, taking into account irregular movements. Methods: Forty-two individuals with HD and fourteen age-matched non-HD peers completed clinic-based assessments and a standardized laboratory-based circuit of functional activities, wearing inertial measurement units on the wrists, legs, and trunk. These activities were used to train and test an algorithm for the automated detection of walking. Subsequently, 29 HD participants and 22 age-matched non-HD peers wore a tri-axial accelerometer on their non-dominant wrist for 7 days. Measures included gait quantity (e.g., steps per day), gait quality (e.g., regularity) metrics, and percentage of walking bouts with irregular movements. Results: Measures of daily-living gait quantity including step counts, walking time and bouts per day were similar in HD participants and non-HD peers (p > 0.05). HD participants with higher clinician-rated upper body chorea had a greater percentage of walking bouts with irregular movements compared to those with lower chorea (p = 0.060) and non-HD peers (p < 0.001). Even after accounting for irregular movements, within-bout walking consistency was lower in HD participants compared to non-HD peers (p < 0.001), while across-bout variability of these measures was higher (p < 0.001). Many of the daily-living measures were associated with disease-specific measures of motor function. Conclusions: Results suggest that a wrist-worn accelerometer can be used to evaluate the quantity and quality of daily-living gait in people with HD, while accounting for the influence of irregular (choreic-like) movements, and that gait features related to within- and across-bout consistency markedly differ in individuals with HD and non-HD peers

    Mobility recorded by wearable devices and gold standards: the Mobilise-D procedure for data standardization

    Get PDF
    Wearable devices are used in movement analysis and physical activity research to extract clinically relevant information about an individual's mobility. Still, heterogeneity in protocols, sensor characteristics, data formats, and gold standards represent a barrier for data sharing, reproducibility, and external validation. In this study, we aim at providing an example of how movement data (from the real-world and the laboratory) recorded from different wearables and gold standard technologies can be organized, integrated, and stored. We leveraged on our experience from a large multi-centric study (Mobilise-D) to provide guidelines that can prove useful to access, understand, and re-use the data that will be made available from the study. These guidelines highlight the encountered challenges and the adopted solutions with the final aim of supporting standardization and integration of data in other studies and, in turn, to increase and facilitate comparison of data recorded in the scientific community. We also provide samples of standardized data, so that both the structure of the data and the procedure can be easily understood and reproduced

    Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device

    Get PDF
    This study aimed to validate a wearable device's walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson's Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and - 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application.Trial registration: ISRCTN - 12246987

    Acceptability of wearable devices for measuring mobility remotely: Observations from the Mobilise-D technical validation study

    Get PDF
    Background This study aimed to explore the acceptability of a wearable device for remotely measuring mobility in the Mobilise-D technical validation study (TVS), and to explore the acceptability of using digital tools to monitor health. Methods Participants (N = 106) in the TVS wore a waist-worn device (McRoberts Dynaport MM + ) for one week. Following this, acceptability of the device was measured using two questionnaires: The Comfort Rating Scale (CRS) and a previously validated questionnaire. A subset of participants (n = 36) also completed semi-structured interviews to further determine device acceptability and to explore their opinions of the use of digital tools to monitor their health. Questionnaire results were analysed descriptively and interviews using a content analysis. Results The device was considered both comfortable (median CRS (IQR; min-max) = 0.0 (0.0; 0–20) on a scale from 0–20 where lower scores signify better comfort) and acceptable (5.0 (0.5; 3.0–5.0) on a scale from 1–5 where higher scores signify better acceptability). Interviews showed it was easy to use, did not interfere with daily activities, and was comfortable. The following themes emerged from participants’ as being important to digital technology: altered expectations for themselves, the use of technology, trust, and communication with healthcare professionals. Conclusions Digital tools may bridge existing communication gaps between patients and clinicians and participants are open to this. This work indicates that waist-worn devices are supported, but further work with patient advisors should be undertaken to understand some of the key issues highlighted. This will form part of the ongoing work of the Mobilise-D consortium

    An Algorithm for Accurate Marker-Based Gait Event Detection in Healthy and Pathological Populations During Complex Motor Tasks

    Get PDF
    There is growing interest in the quantification of gait as part of complex motor tasks. This requires gait events (GEs) to be detected under conditions different from straight walking. This study aimed to propose and validate a new marker-based GE detection method, which is also suitable for curvilinear walking and step negotiation. The method was first tested against existing algorithms using data from healthy young adults (YA, n = 20) and then assessed in data from 10 individuals from the following five cohorts: older adults, chronic obstructive pulmonary disease, multiple sclerosis, Parkinson’s disease, and proximal femur fracture. The propagation of the errors associated with GE detection on the calculation of stride length, duration, speed, and stance/swing durations was investigated. All participants performed a variety of motor tasks including curvilinear walking and step negotiation, while reference GEs were identified using a validated methodology exploiting pressure insole signals. Sensitivity, positive predictive values (PPV), F1-score, bias, precision, and accuracy were calculated. Absolute agreement [intraclass correlation coefficient (ICC2,1)] between marker-based and pressure insole stride parameters was also tested. In the YA cohort, the proposed method outperformed the existing ones, with sensitivity, PPV, and F1 scores ≥ 99% for both GEs and conditions, with a virtually null bias (<10 ms). Overall, temporal inaccuracies minimally impacted stride duration, length, and speed (median absolute errors ≤1%). Similar algorithm performances were obtained for all the other five cohorts in GE detection and propagation to the stride parameters, where an excellent absolute agreement with the pressure insoles was also found (ICC2,1=0.817− 0.999). In conclusion, the proposed method accurately detects GE from marker data under different walking conditions and for a variety of gait impairments

    Design and validation of a multi-task, multi-context protocol for real-world gait simulation

    Get PDF
    Background: Measuring mobility in daily life entails dealing with confounding factors arising from multiple sources, including pathological characteristics, patient specific walking strategies, environment/context, and purpose of the task. The primary aim of this study is to propose and validate a protocol for simulating real-world gait accounting for all these factors within a single set of observations, while ensuring minimisation of participant burden and safety. Methods: The protocol included eight motor tasks at varying speed, incline/steps, surface, path shape, cognitive demand, and included postures that may abruptly alter the participants’ strategy of walking. It was deployed in a convenience sample of 108 participants recruited from six cohorts that included older healthy adults (HA) and participants with potentially altered mobility due to Parkinson’s disease (PD), multiple sclerosis (MS), proximal femoral fracture (PFF), chronic obstructive pulmonary disease (COPD) or congestive heart failure (CHF). A novelty introduced in the protocol was the tiered approach to increase difficulty both within the same task (e.g., by allowing use of aids or armrests) and across tasks. Results: The protocol proved to be safe and feasible (all participants could complete it and no adverse events were recorded) and the addition of the more complex tasks allowed a much greater spread in walking speeds to be achieved compared to standard straight walking trials. Furthermore, it allowed a representation of a variety of daily life relevant mobility aspects and can therefore be used for the validation of monitoring devices used in real life. Conclusions: The protocol allowed for measuring gait in a variety of pathological conditions suggests that it can also be used to detect changes in gait due to, for example, the onset or progression of a disease, or due to therapy. Trial registration: ISRCTN—12246987

    Technical validation of real-world monitoring of gait: a multicentric observational study

    Get PDF
    Introduction: Existing mobility endpoints based on functional performance, physical assessments and patient self-reporting are often affected by lack of sensitivity, limiting their utility in clinical practice. Wearable devices including inertial measurement units (IMUs) can overcome these limitations by quantifying digital mobility outcomes (DMOs) both during supervised structured assessments and in real-world conditions. The validity of IMU-based methods in the real- world, however, is still limited in patient populations. Rigorous validation procedures should cover the device metrological verification, the validation of the algorithms for the DMOs computation specifically for the population of interest and in daily life situations, and the users’ perspective on the device. Methods and analysis: This protocol was designed to establish the technical validity and patient acceptability of the approach used to quantify digital mobility in the real world by Mobilise-D, a consortium funded by the European Union (EU) as part of the Innovative Medicine Initiative, aiming at fostering regulatory approval and clinical adoption of DMOs. After defining the procedures for the metrological verification of an IMU-based device, the experimental procedures for the validation of algorithms used to calculate the DMOs are presented. These include laboratory and real-world assessment in 120 participants from five groups: healthy older adults; chronic obstructive pulmonary disease, Parkinson’s disease, multiple sclerosis, proximal femoral fracture and congestive heart failure. DMOs extracted from the monitoring device will be compared with those from different reference systems, chosen according to the contexts of observation. Questionnaires and interviews will evaluate the users’ perspective on the deployed technology and relevance of the mobility assessment. Ethics and dissemination: The study has been granted ethics approval by the centre’s committees (London—Bloomsbury Research Ethics committee; Helsinki Committee, Tel Aviv Sourasky Medical Centre; Medical Faculties of The University of Tübingen and of the University of Kiel). Data and algorithms will be made publicly available
    • …
    corecore