8 research outputs found

    Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways

    Get PDF
    Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.European Research Council ERC2014-ADG669898 TARLOOPMinisterio de Economía y Competitividad BFU2016-75058-PJunta de Andalucía BIO123

    Analyses of the yeast Rad51 recombinase A265V mutant reveal different in vivo roles of Swi2-like factors

    Get PDF
    The Saccharomyces cerevisiae Swi2-like factors Rad54 and Rdh54 play multifaceted roles in homologous recombination via their DNA translocase activity. Aside from promoting Rad51-mediated DNA strand invasion of a partner chromatid, Rad54 and Rdh54 can remove Rad51 from duplex DNA for intracellular recycling. Although the in vitro properties of the two proteins are similar, differences between the phenotypes of the null allele mutants suggest that they play different roles in vivo. Through the isolation of a novel RAD51 allele encoding a protein with reduced affinity for DNA, we provide evidence that Rad54 and Rdh54 have different in vivo interactions with Rad51. The mutant Rad51 forms a complex on duplex DNA that is more susceptible to dissociation by Rdh54. This Rad51 variant distinguishes the in vivo functions of Rad54 and Rdh54, leading to the conclusion that two translocases remove Rad51 from different substrates in vivo. Additionally, we show that a third Swi2-like factor, Uls1, contributes toward Rad51 clearance from chromatin in the absence of Rad54 and Rdh54, and define a hierarchy of action of the Swi2-like translocases for chromosome damage repair

    Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways

    Get PDF
    Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies

    Roles of DNA helicases and Exo1 in the avoidance of mutations induced by Top1-mediated cleavage at ribonucleotides in DNA

    No full text
    <p>The replicative DNA polymerases insert ribonucleotides into DNA at a frequency of approximately 1/6500 nucleotides replicated. The rNMP residues make the DNA backbone more susceptible to hydrolysis and can also distort the helix, impeding the transcription and replication machineries. rNMPs in DNA are efficiently removed by RNaseH2 by a process called ribonucleotides excision repair (RER). In the absence of functional RNaseH2, rNMPs are subject to cleavage by Topoisomerase I, followed by further processing to result in deletion mutations due to slippage in simple DNA repeats. The topoisomerase I-mediated cleavage at rNMPs results in DNA ends that cannot be ligated by DNA ligase I, a 5′OH end and a 2′–3′ cyclic phosphate end. In the budding yeast, the mutation level in RNaseH2 deficient cells is kept low via the action of the Srs2 helicase and the Exo1 nuclease, which collaborate to process the Top1-induced nick with subsequent non-mutagenic gap filling. We have surveyed other helicases and nucleases for a possible role in reducing mutagenesis at Top1 nicks at rNMPs and have uncovered a novel role for the RecQ family helicase Sgs1 in this process.</p
    corecore