10 research outputs found

    Helicopter Airborne Laser Positioning System (HALPS)

    Get PDF
    The theory of operation, configuration, laboratory, and ground test results obtained with a helicopter airborne laser positioning system developed by Princeton University is presented. Unfortunately, due to time constraints, flight data could not be completed for presentation at this time. The system measures the relative position between two aircraft in three dimensions using two orthogonal fan-shaped laser beams sweeping across an array of four detectors. Specifically, the system calculates the relative range, elevation, and azimuth between an observation aircraft and a test helicopter with a high degree of accuracy. The detector array provides a wide field of view in the presence of solar interference due to compound parabolic concentrators and spectral filtering of the detector pulses. The detected pulses and their associated time delays are processed by the electronics and are sent as position errors to the helicopter pilot who repositions the aircraft as part of the closed loop system. Accuracies obtained in the laboratory at a range of 80 ft in the absence of sunlight were + or - 1 deg in elevation; +0.5 to -1.5 deg in azimuth; +0.5 to -1.0 ft in range; while elevation varied from 0 to +28 deg and the azimuth varied from 0 to + or - 45 deg. Accuracies in sunlight were approximately 40 deg (+ or - 20 deg) in direct sunlight

    Flight measured downwash of the QSRA

    Get PDF
    Several reports have been written on the performance of the Quiet Short-Haul Research Aircraft, which shows the advantages of upper-surface blowing or the propulsive-lift wing as it applies to lift, maneuverability, and short takeoff and landing. This high lift generation at low speeds results in substantial downwash, especially in the low-aft fuselage tail position. The high T-tail of the Quiet Short-Haul Research Aircraft minimizes the undesirable downwash effects from the propulsive-lift wing. Queries from Department of Defense agencies and industry for quantitative values prompted a series of flight-measured downwash tests at the high T-tail and the low aft fuselage position. The results are presented in a summarized format, showing downwash, Delta epsilon/Delta a, for both locations. As would be expected, downwash increases for increased power and USB flap settings. The downwash is greater in the low aft-fuselage position as compared to the high T-tail area

    A potential flight evaluation of an upper-surface-blowing/circulation-control-wing concept

    Get PDF
    The technology data base for powered lift aircraft design has advanced over the last 15 years. NASA's Quiet Short Haul Research Aircraft (QSRA) has provided a flight verification of upper surface blowing (USB) technology. The A-6 Circulation Control Wing flight demonstration aricraft has provide data for circulation control wing (CCW) technology. Recent small scale wind tunnel model tests and full scale static flow turning test have shown the potential of combining USB with CCW technology. A flight research program is deemed necessary to fully explore the performance and control aspects of CCW jet substitution for the mechanical USB Coanda flap. The required hardware design would also address questions about the development of flight weight ducts and CCW jets and the engine bleed-air capabilities vs requirements. NASA's QSRA would be an optimum flight research vehicle for modification to the USB/CCW configuration. The existing QSRA data base, the design simplicity of the QSRA wing trailing edge controls, availability of engine bleed-air, and the low risk, low cost potential of the suggested program is discussed

    Flight investigation of the use of a nose gear jump strut to reduce takeoff ground roll distance of STOL aircraft

    Get PDF
    A series of flight tests was conducted to evaluate the reduction of takeoff ground roll distance obtainable from a rapid extension of the nose gear strut. The NASA Quiet Short-haul Research Aircraft (QSRA) used for this investigation is a transport-size short takeoff and landing (STOL) research vehicle with a slightly swept wing that employs the upper surface blowing (USB) concept to attain the high lift levels required for its low speed, short-field performance. Minor modifications to the conventional nose gear assembly and the addition of a high pressure pneumatic system and a control system provided the extendible nose gear, or 'jump strut,' capability. The limited flight test program explored the effects of thrust-to-weight ratio, storage tank initial pressure, and control valve open time duration on the ground roll distance. The data show that the predicted reduction of takeoff ground roll on the order of 10 percent was achieved with the use of the jump strut. Takeoff performance with the jump strut was also found to be essentially independent of the pneumatic supply pressure and was only slightly affected by control valve open time within the range of the parameters examined

    A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33.

    No full text
    We conducted a genome-wide association study (GWAS) of pancreatic cancer in 3,851 cases and 3,934 controls drawn from twelve prospective cohort studies and eight case-control studies. Based on a logistic regression model for genotype trend effect that was adjusted for study, age, sex, self-described ancestry and five principal components, we identified eight SNPs that map to three loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Two correlated SNPs, rs9543325 (P=3.27×10(−11); per allele odds ratio, OR 1.26, 95% CI=1.18-1.35) and rs9564966 (P=5.86×10(−8); per allele OR 1.21, 95% CI=1.13-1.30) map to a non-genic region on chromosome 13q22.1. Five SNPs on 1q32.1 map to NR5A2; the strongest signal was rs3790844 (P=2.45×10(−10); per allele OR 0.77, 95% CI=0.71-0.84). A single SNP, rs401681 (P=3.66×10(−7); per allele OR 1.19, 95% CI=1.11-1.27) maps to the CLPTM1L-TERT locus on 5p15.33, associated with multiple cancers. Our study has identified common susceptibility loci for pancreatic cancer that warrant follow-up studies

    Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer

    No full text
    Pancreatic cancer is the fourth leading cause of cancer death in the developed world. Both inherited high-penetrance mutations in BRCA2 (ref. 2), ATM, PALB2 (ref. 4), BRCA1 (ref. 5), STK11 (ref. 6), CDKN2A and mismatch-repair genes and low-penetrance loci are associated with increased risk. To identify new risk loci, we performed a genome-wide association study on 9,925 pancreatic cancer cases and 11,569 controls, including 4,164 newly genotyped cases and 3,792 controls in 9 studies from North America, Central Europe and Australia. We identified three newly associated regions: 17q25.1 (LINC00673, rs11655237, odds ratio (OR) = 1.26, 95% confidence interval (CI) = 1.19-1.34, P = 1.42 × 10-14), 7p13 (SUGCT, rs17688601, OR = 0.88, 95% CI = 0.84-0.92, P = 1.41 × 10-8) and 3q29 (TP63, rs9854771, OR = 0.89, 95% CI = 0.85-0.93, P = 2.35 × 10-8). We detected significant association at 2p13.3 (ETAA1, rs1486134, OR = 1.14, 95% CI = 1.09-1.19, P = 3.36 × 10-9), a region with previous suggestive evidence in Han Chinese. We replicated previously reported associations at 9q34.2 (ABO), 13q22.1 (KLF5), 5p15.33 (TERT and CLPTM1), 13q12.2 (PDX1), 1q32.1 (NR5A2), 7q32.3 (LINC-PINT), 16q23.1 (BCAR1) and 22q12.1 (ZNRF3). Our study identifies new loci associated with pancreatic cancer risk

    Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer

    No full text

    Purinergic signalling in the kidney in health and disease

    No full text

    South Africa (1992 and 1993)

    No full text
    corecore