28 research outputs found

    Lithium motion in the anode material LiC6 as seen via time-domain 7Li NMR

    Get PDF
    Since the commercialization of rechargeable lithium-ion energy storage systems in the early 1990s, graphite intercalation compounds (GICs) have served as the number one negative electrode material in most of today's batteries. During charging the performance of a battery is closely tied with facile Li insertion into the graphite host structure. So far, only occasionally time-domain nuclear magnetic resonance (NMR) measurements have been reported to study Li self-diffusion parameters in GICs. Here, we used several NMR techniques to enlighten Li hopping motions from an atomic-scale point of view. Li self-diffusion in the stage-1 GIC LiC6 has been studied comparatively by temperature-variable spin-spin relaxation NMR as well as (rotating frame) spin-lattice relaxation NMR. The data collected yield information on both the relevant activation energies and jump rates, which can directly be transformed into Li self-diffusion coefficients. At room temperature the Li self-diffusion coefficient turns out to be 10−15m2s−1, thus, slightly lower than that for layer-structured cathode materials such as Lix≈0.7TiS2. © 2013 American Physical Society

    Studying Li dynamics in a gas-phase synthesized amorphous oxide by NMR and impedance spectroscopy

    Get PDF
    Li diffusion parameters of a structurally disordered Li-Al-Si-oxide prepared by gas-phase synthesis were complementarily investigated by both time-domain NMR techniques and impedance spectroscopy. The first include 7Li NMR spin-lattice relaxation (SLR) measurements in the laboratory as well as in the rotating frame of reference. An analysis of variable-temperature NMR line widths point to an activation energy E a of approximately 0.6 eV. The value is confirmed by rotating-frame SLR NMR data recorded at approximately 11 kHz. Above room temperature the low-temperature flank of a diffusion-induced rate peak shows up which can be approximated by an Arrhenius law yielding E a = 0.56(1) eV. This is in very good agreement with the result obtained from 7Li spin-alignment echo (SAE) NMR being sensitive to even slower Li dynamics. For comparison, dc-conductivity measurements, probing long-range motions, yield E a = 0.8 eV. Interestingly, lowtemperature SAE NMR decay rates point to localized Li motions being characterized with a very small activation energy of only 0.09 eV. © by Oldenbourg Wissenschaftsverlag, München

    Nanostructured Ceramics: Ionic Transport and Electrochemical Activity

    Get PDF
    Ceramics with nm-sized dimensions are widely used in various applications such as batteries, fuel cells or sensors. Their oftentimes superior electrochemical properties as well as their capabilities to easily conduct ions are, however, not completely understood. Depending on the method chosen to prepare the materials, nanostructured ceramics may be equipped with a large area fraction of interfacial regions that exhibit structural disorder. Elucidating the relationship between microscopic disorder and ion dynamics as well as electrochemical performance is necessary to develop new functionalized materials. Here, we highlight some of the very recent studies on ion transport and electrochemical properties of nanostructured ceramics. Emphasis is put on TiO2 in the form of nanorods, nanotubes or being present as mesoporous material. Further examples deal with nanocrystalline peroxides such as Li2O2 or nanostructured oxides (Li2TiO3, LiAlO2, LiTaO3, Li2CO3 and Li2B4O7). These materials served as model systems to explore the influence of ball-milling on overall ionic transport
    corecore