56 research outputs found

    Quark-Antiquark Potential and Generalized Borel Transform

    Get PDF
    The heavy quark potential and particularly the one proposed by Richardson to incorporate both asymptotic freedom and linear confinement is analyzed in terms of a generalized Borel Transform recently proposed. We were able to obtain, in the range of physical interest, an approximate analytical expression for the potential in coordinate space valid even for intermediate distances. The deviation between our approximate potential and the numerical evaluation of the Richardson's one is much smaller than Λ\Lambda of QCD. The ccc\overline{c} and bbb\overline{b} quarkonia energy levels agree reasonably well with experimental data for cc and bb masses in good agreement with the values obtained from experiments.Comment: 9 pages, 3 Tabl

    On Charge Quantization and Abelian Gauge Horizontal Symmetries

    Get PDF
    Under the assumption that there exists a local gauge horizontal symmetry GHG_H wich allows only for a top quark mass at tree level, we look for the constraints that charge quatization and the family structure of the standard model imposes on that symmetry.Comment: 13 pages, LaTeX, Acepted in Physics Letters

    Next to Leading Order Semi-inclusive Spin Asymmetries

    Get PDF
    We have computed semi-inclusive spin asymmetries for proton and deuteron targets including next to leading order (NLO) QCD corrections and contributions coming from the target fragmentation region. These corrections have been estimated using NLO fragmentation functions, parton distributions and also a model for spin dependent fracture functions which is proposed here. We have found that NLO corrections are small but non-negligible in a scheme where gluons are polarised and that our estimate for target fragmentation effects does not modify significantly charged asymmetries but affects the so called difference asymmetries.Comment: Latex, 14 pages, 6 figures in 4 Postcript file

    Looking for magnetic monopoles at LHC with diphoton events

    Get PDF
    Magnetic monopoles have been a subject of interest since Dirac established the relation between the existence of monopoles and charge quantization. The intense experimental search carried thus far has not met with success. The Large Hadron Collider is reaching energies never achieved before allowing the search for exotic particles in the TeV mass range. In a continuing effort to discover these rare particles we propose here other ways to detect them. We study the observability of monopoles and monopolium, a monopole-antimonopole bound state, at the Large Hadron Collider in the γγ\gamma \gamma channel for monopole masses in the range 500-1000 GeV. We conclude that LHC is an ideal machine to discover monopoles with masses below 1 TeV at present running energies and with 5 fb1^{-1} of integrated luminosity.Comment: This manuscript contains information appeared in Looking for magnetic monopoles at LHC, arXiv:1104.0218 [hep-ph] and Monopolium detection at the LHC.,arXiv:1107.3684 [hep-ph] by the same authors, rewritten for joint publication in The European Physica Journal Plus. 26 pages, 22 figure

    A Method to Determine the Tau Neutrino Helicity Using Polarized Taus

    Get PDF
    A method is presented to extract the tau neutrino helicity, or equivalently, the chirality parameter γVA\gamma_{\mathrm{VA}}, independent of any tau polarization which may be present. The method is thus well-suited to measurements using taus produced from the Z0Z^0 and is complementary to analyses using tau correlations since it provides the sign of the chirality parameter which is otherwise unavailable without recourse to lower energy experiments where taus are unpolarized. Results of Monte Carlo studies and comments regarding the use of the technique in experiments are also included.Comment: 13 pages, uuencoded postscript fil

    SimProp: a Simulation Code for Ultra High Energy Cosmic Ray Propagation

    Full text link
    A new Monte Carlo simulation code for the propagation of Ultra High Energy Cosmic Rays is presented. The results of this simulation scheme are tested by comparison with results of another Monte Carlo computation as well as with the results obtained by directly solving the kinetic equation for the propagation of Ultra High Energy Cosmic Rays. A short comparison with the latest flux published by the Pierre Auger collaboration is also presented.Comment: 19 pages, 12 eps figures, version accepted for publication in JCA

    Monopolium production from photon fusion at the Large Hadron Collider

    Get PDF
    Magnetic monopoles have attracted the attention of physicists since the founding of the electromagnetic theory. Their search has been a constant endeavor which was intensified when Dirac established the relation between the existence of monopoles and charge quantization. However, these searches have been unsuccessful. We have recently proposed that monopolium, a monopole-antimonopole bound state, so strongly bound that it has a relatively small mass, could be easier to find and become an indirect but clear signature for the existence of magnetic monopoles. In here we extend our previous analysis for its production to two photon fusion at LHC energies

    Extragalactic Sources for Ultra High Energy Cosmic Ray Nuclei

    Full text link
    In this article we examine the hypothesis that the highest energy cosmic rays are complex nuclei from extragalactic sources. Under reasonable physical assumptions, we show that the nearby metally rich starburst galaxies (M82 and NGC 253) can produce all the events observed above the ankle. This requires diffusion of particles below 102010^{20} eV in extragalactic magnetic fields B15B \approx 15 nG. Above 101910^{19} eV, the model predicts the presence of significant fluxes of medium mass and heavy nuclei with small rate of change of composition. Notwithstanding, the most salient feature of the starburst-hypothesis is a slight anisotropy induced by iron debris just before the spectrum-cutoff.Comment: To appear in Phys. Rev. D, reference adde

    Scaling anomaly in cosmic string background

    Full text link
    We show that the classical scale symmetry of a particle moving in cosmic string background is broken upon inequivalent quantization of the classical system, leading to anomaly. The consequence of this anomaly is the formation of single bound state in the coupling interval \gamma\in(-1,1). The inequivalent quantization is characterized by a 1-parameter family of self-adjoint extension parameter \omega. It has been conjectured that the formation of loosely bound state in cosmic string background may lead to the so called anomalous scattering cross section for the particles, which is usually seen in molecular physics.Comment: 4 pages,1 figur

    Anisotropy at the end of the cosmic ray spectrum?

    Full text link
    The starburst galaxies M82 and NGC253 have been proposed as the primary sources of cosmic rays with energies above 1018.710^{18.7} eV. For energies \agt 10^{20.3} eV the model predicts strong anisotropies. We calculate the probabilities that the latter can be due to chance occurrence. For the highest energy cosmic ray events in this energy region, we find that the observed directionality has less than 1% probability of occurring due to random fluctuations. Moreover, during the first 5 years of operation at Auger, the observation of even half the predicted anisotropy has a probability of less than 10510^{-5} to occur by chance fluctuation. Thus, this model can be subject to test at very small cost to the Auger priors budget and, whatever the outcome of that test, valuable information on the Galactic magnetic field will be obtained.Comment: Final version to be published in Physical Review
    corecore