80 research outputs found

    Systematic errors in strong gravitational lensing reconstructions, a numerical simulation perspective

    Get PDF
    We present the analysis of a sample of twenty-four SLACS-like galaxy-galaxy strong gravitational lens systems with a background source and deflectors from the Illustris-1 simulation. We study the degeneracy between the complex mass distribution of the lenses, substructures, the surface brightness distribution of the sources, and the time delays. Using a novel inference framework based on Approximate Bayesian Computation, we find that for all the considered lens systems, an elliptical and cored power-law mass density distribution provides a good fit to the data. However, the presence of cores in the simulated lenses affects most reconstructions in the form of a Source Position Transformation. The latter leads to a systematic underestimation of the source sizes by 50 per cent on average, and a fractional error in H0H_{0} of around 2519+3725_{-19}^{+37} per cent. The analysis of a control sample of twenty-four lens systems, for which we have perfect knowledge about the shape of the lensing potential, leads to a fractional error on H0H_{0} of 123+612_{-3}^{+6} per cent. We find no degeneracy between complexity in the lensing potential and the inferred amount of substructures. We recover an average total projected mass fraction in substructures of fsub<1.72.0×103f_{\rm sub}<1.7-2.0\times10^{-3} at the 68 per cent confidence level in agreement with zero and the fact that all substructures had been removed from the simulation. Our work highlights the need for higher-resolution simulations to quantify the lensing effect of more realistic galactic potentials better, and that additional observational constraint may be required to break existing degeneracies.Comment: Accepted by MNRA

    Identifying gravitationally lensed supernovae within the Zwicky Transient Facility public survey

    Full text link
    Strong gravitational lensing of supernovae is exceedingly rare. To date, only a handful of lensed supernovae are known. Despite their rarity, lensed supernovae have emerged as one of the most promising methods for measuring the current expansion rate of the Universe and breaking the Hubble tension. We present an extensive search for gravitationally lensed supernovae within the Zwicky Transient Facility (ZTF) public survey, covering 12,524 transients with good light curves discovered during four years of observations. We crossmatch a catalogue of known and candidate lens galaxies with our transient sample and find only one coincident source, which was due to chance alignment. To search for supernovae magnified by unknown lens galaxies, we test multiple methods that have been suggested in the literature, for the first time on real data. This includes selecting objects with extremely red colours and those that appear inconsistent with the host galaxy redshift. In both cases, we find a few hundred candidates, most of which are due to contamination from activate galactic nuclei, bogus detections, or unlensed supernovae. The false positive rate from these methods presents significant challenges for future surveys. In total, 65 unique transients were identified across all of our selection methods that required detailed manual rejection, which would be infeasible for larger samples. Overall, we do not find any compelling candidates for lensed supernovae, which is broadly consistent with previous estimates for the rate of lensed supernovae in the ZTF public survey and the number expected to pass the selection cuts we apply.Comment: Submitte

    Sharp - VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars

    Get PDF
    We present an analysis of seven strongly gravitationally lensed quasars and the corresponding constraints on the properties of dark matter. Our results are derived by modelling the lensed image positions and flux-ratios using a combination of smooth macro-models and a population of low-mass haloes within the mass range of 106-109 M☉. Our lens models explicitly include higher order complexity in the form of stellar discs and luminous satellites, as well as low-mass haloes located along the observed lines of sight for the first time. Assuming a cold dark matter (CDM) cosmology, we infer an average total mass fraction in substructure of fsub = 0.012+−00007004 (68 per cent confidence limits), which is in agreement with the predictions from CDM hydrodynamical simulations to within 1σ. This result is closer to the predictions than those from previous studies that did not include line-of-sight haloes. Under the assumption of a thermal relic dark matter model, we derive a lower limit on the particle relic mass of mth &gt; 5.58 keV (95 per cent confidence limits), which is consistent with a value of mth &gt; 5.3 keV from the recent analysis of the Ly α forest. We also identify two main sources of possible systematic errors and conclude that deeper investigations in the complex structure of lens galaxies as well as the size of the background sources should be a priority for this field

    Pharmacokinetic Characterisation and Comparison of Bioavailability of Intranasal Fentanyl, Transmucosal, and Intravenous Administration through a Three-Way Crossover Study in 24 Healthy Volunteers

    Get PDF
    Background. For more than 60 years, the synthetic opioid fentanyl has been widely used in anaesthesia and analgesia. While the intravenous formulation is primarily used for general anaesthesia and intensive care settings, the drug’s high lipophilic properties also allow various noninvasive routes of administration. Published data suggest that intranasal administration is also attractive for use as intranasal patient-controlled analgesia (PCA). A newly developed intranasal fentanyl formulation containing 47 μg fentanyl, intravenous fentanyl, and oral transmucosal fentanyl citrate were characterised, and bioavailability was compared to assess the suitability of the intranasal formulation for an intranasal PCA product. Methods. 27 healthy volunteers were enrolled in a single-centre, open-label, randomised (order of treatments), single-dose study in a three-period crossover design. The pharmacokinetics of one intranasal puff of fentanyl formulation (47 μg, 140 mL per puff), one short intravenous infusion of 50 μg fentanyl, and one lozenge with an integrated applicator (200 μg fentanyl) were studied, and bioavailability was calculated. Blood samples were collected over 12 hours, and plasma concentrations of fentanyl were determined by HPLC with MS/MS detection. Results. 24 volunteers completed the study. The geometric mean of AUC0-tlast was the highest with oral transmucosal administration (1106 h  pg/ml, CV% = 32.86), followed by intravenous (672 h  pg/ml, CV% = 32.18) and intranasal administration (515 h  pg/ml, CV% = 30.10). Cmax was 886 pg/ml (CV% = 59.38) for intravenous, 338 pg/ml (CV% = 45.61) for intranasal, and 310 pg/ml (CV% = 29.58) for oral transmucosal administration. tmax was shortest for intravenous administration (0.06 h, SD = 0.056), followed by intranasal (0.21 h, SD = 0.078) and oral transmucosal administration (1.20 h, SD = 0.763). Dose-adjusted absolute bioavailability was determined to be 74.70% for the intranasal formulation and 41.25% for the oral transmucosal product. In total, 38 adverse events (AEs) occurred. Fourteen AEs were potentially related to the investigational items. No serious AE occurred. Conclusion. Pharmacokinetic parameters and bioavailability of the investigated intranasal fentanyl indicated suitability for its intended use as an intranasal PCA option

    Detecting low-mass haloes with strong gravitational lensing I: the effect of data quality and lensing configuration

    Get PDF
    This paper aims to quantify how the lowest halo mass that can be detected with galaxy-galaxy strong gravitational lensing depends on the quality of the observations and the characteristics of the observed lens systems. Using simulated data, we measure the lowest detectable NFW mass at each location of the lens plane, in the form of detailed sensitivity maps. In summary, we find that: (i) the lowest detectable mass Mlow decreases linearly as the signal-to-noise ratio (SNR) increases and the sensitive area is larger when we decrease the noise; (ii) a moderate increase in angular resolution (0.07′′ versus 0.09′′) and pixel scale (0.01′′ versus 0.04′′) improves the sensitivity by on average 0.25 dex in halo mass, with more significant improvement around the most sensitive regions; (iii) the sensitivity to low-mass objects is largest for bright and complex lensed galaxies located inside the caustic curves and lensed into larger Einstein rings (i.e rE ≥ 1.0′′). We find that for the sensitive mock images considered in this work, the minimum mass that we can detect at the redshift of the lens lies between 1.5 × 108 and 3 × 109 M☉. We derive analytic relations between Mlow, the SNR and resolution and discuss the impact of the lensing configuration and source structure. Our results start to fill the gap between approximate predictions and real data and demonstrate the challenging nature of calculating precise forecasts for gravitational imaging. In light of our findings, we discuss possible strategies for designing strong lensing surveys and the prospects for HST, Keck, ALMA, Euclid and other future observations

    Attenuation of Age-Related Metabolic Dysfunction in Mice With a Targeted Disruption of the Cβ Subunit of Protein Kinase A

    Get PDF
    The cyclic adenosine monophosphate–dependent protein kinase A (PKA) pathway helps regulate both cell growth and division, and triglyceride storage and metabolism in response to nutrient status. Studies in yeast show that disruption of this pathway promotes longevity in a manner similar to caloric restriction. Because PKA is highly conserved, it can be studied in mammalian systems. This report describes the metabolic phenotype of mice lacking the PKA catalytic subunit Cβ. We confirmed that Cβ has high levels of expression in the brain but also showed moderate levels in liver. Cβ-null animals had reduced basal PKA activity while appearing overtly normal when fed standard rodent chow. However, the absence of Cβ protected mice from diet-induced obesity, steatosis, dyslipoproteinemia, and insulin resistance, without any differences in caloric intake or locomotor activity. These findings have relevant pharmacological implications because aging in mammals is characterized by metabolic decline associated with obesity, altered body fat distribution, and insulin resistance

    The state of HRM in the Middle East:Challenges and future research agenda

    Get PDF
    Based on a robust structured literature analysis, this paper highlights the key developments in the field of human resource management (HRM) in the Middle East. Utilizing the institutional perspective, the analysis contributes to the literature on HRM in the Middle East by focusing on four key themes. First, it highlights the topical need to analyze the context-specific nature of HRM in the region. Second, via the adoption of a systematic review, it highlights state of development in HRM in the research analysis set-up. Third, the analysis also helps to reveal the challenges facing the HRM function in the Middle East. Fourth, it presents an agenda for future research in the form of research directions. While doing the above, it revisits the notions of “universalistic” and “best practice” HRM (convergence) versus “best-fit” or context distinctive (divergence) and also alternate models/diffusion of HRM (crossvergence) in the Middle Eastern context. The analysis, based on the framework of cross-national HRM comparisons, helps to make both theoretical and practical implications

    Constraining sterile neutrino cosmologies with strong gravitational lensing observations at redshift z ∼ 0.2

    Get PDF
    We use the observed amount of subhaloes and line-of-sight dark matter haloes in a sample of 11 gravitational lens systems from the Sloan Lens ACS Survey to constrain the free-streaming properties of the dark matter particles. In particular, we combine the detection of a small-mass dark matter halo by Vegetti et al. with the non-detections by Vegetti et al. and compare the derived subhalo and halo mass functions with expectations from cold dark matter (CDM) and resonantly produced sterile neutrino models. We constrain the half-mode mass, i.e. the mass scale at which the linear matter power spectrum is reduced by 50 per cent relatively to the CDM model, to be log Mhm[M⊙] 0.3 keV) at the 2σ level. This excludes sterile neutrino models with neutrino masses ms < 0.8 keV at any value of L6. Our constraints are weaker than currently provided by the number of Milky Way satellites, observations of the 3.5 keV X-ray line, and the Lyman α forest. However, they are more robust than the former as they are less affected by baryonic processes. Moreover, unlike the latter, they are not affected by assumptions on the thermal histories for the intergalactic medium. Gravitational lens systems with higher data quality and higher source and lens redshift are required to obtain tighter constraints

    Constraining sterile neutrino cosmologies with strong gravitational lensing observations at redshift z ~ 0.2

    No full text
    We use the observed amount of subhaloes and line-of-sight dark matter haloes in a sample of 11 gravitational lens systems from the Sloan Lens ACS Survey to constrain the free-streaming properties of the dark matter particles. In particular, we combine the detection of a small-mass dark matter halo by Vegetti et al. with the non-detections by Vegetti et al. and compare the derived subhalo and halo mass functions with expectations from cold dark matter (CDM) and resonantly produced sterile neutrino models. We constrain the half-mode mass, i.e. the mass scale at which the linear matter power spectrum is reduced by 50 per cent relatively to the CDM model, to be log Mhm[M⊙] &lt; 12.0 (equivalent thermal relic mass mth &gt; 0.3 keV) at the 2s level. This excludes sterile neutrino models with neutrino masses ms &lt; 0.8 keV at any value of L6. Our constraints are weaker than currently provided by the number of MilkyWay satellites, observations of the 3.5 keV X-ray line, and the Lyman a forest. However, they are more robust than the former as they are less affected by baryonic processes. Moreover, unlike the latter, they are not affected by assumptions on the thermal histories for the intergalactic medium. Gravitational lens systems with higher data quality and higher source and lens redshift are required to obtain tighter constraints
    corecore