146 research outputs found

    Unexpected sensitivity of the highly invasive spider Mermessus trilobatus to soil disturbance in grasslands

    Get PDF
    The dwarf spider Mermessus trilobatus (Araneae: Linyphiidae), native to North America, has expanded its range over large parts of Europe within less than fifty years. It is notable for occurring in a wide range of mostly agricultural habitats, while most other invasive spiders in Europe are associated with human buildings. As in other invasive invertebrates and plants, the tremendous colonisation success of Mermessus trilobatus might be related to anthropogenic habitat disturbance. Here we aim to test if the invasion success of Mermessus trilobatus in Europe is associated with high tolerance towards soil disturbance. We sampled spiders from eight grasslands experimentally disturbed with superficial soil tillage and eight undisturbed grasslands without tillage. Opposite to our expectation, Mermessus trilobatus densities decrease sharply with soil disturbance. This is in contrast to several native species such as Oedothorax apicatus, which becomes more abundant in the fields after superficial soil tillage. Our study suggests that invasion success of Mermessus trilobatus is not connected to a ruderal strategy. The ecological and evolutionary processes behind colonisation success of Mermessus trilobatus need to be further investigated

    Species richness-environment relationships of European arthropods at two spatial grains : habitats and countries

    Get PDF
    We study how species richness of arthropods relates to theories concerning net primary productivity, ambient energy, water-energy dynamics and spatial environmental heterogeneity. We use two datasets of arthropod richness with similar spatial extents (Scandinavia to Mediterranean), but contrasting spatial grain (local habitat and country). Samples of ground-dwelling spiders, beetles, bugs and ants were collected from 32 paired habitats at 16 locations across Europe. Species richness of these taxonomic groups was also determined for 25 European countries based on the Fauna Europaea database. We tested effects of net primary productivity (NPP), annual mean temperature (T), annual rainfall (R) and potential evapotranspiration of the coldest month (PETmin) on species richness and turnover. Spatial environmental heterogeneity within countries was considered by including the ranges of NPP, T, R and PETmin. At the local habitat grain, relationships between species richness and environmental variables differed strongly between taxa and trophic groups. However, species turnover across locations was strongly correlated with differences in T. At the country grain, species richness was significantly correlated with environmental variables from all four theories. In particular, species richness within countries increased strongly with spatial heterogeneity in T. The importance of spatial heterogeneity in T for both species turnover across locations and for species richness within countries suggests that the temperature niche is an important determinant of arthropod diversity. We suggest that, unless climatic heterogeneity is constant across sampling units, coarse-grained studies should always account for environmental heterogeneity as a predictor of arthropod species richness, just as studies with variable area of sampling units routinely consider area

    Impact across ecosystem boundaries-Does Bti application change quality and composition of the diet of riparian spiders?

    Get PDF
    Emerging aquatic insects link aquatic and adjacent terrestrial food webs by subsidizing terrestrial predators with high -quality prey. One of the main constituents of aquatic subsidy, the non-biting midges (Chironomidae), showed altered emergence dynamics in response to the mosquito control agent Bacillus thuringiensis var. israelensis (Bti). As riparian spi-ders depend on aquatic subsidy, they may be affected by such changes in prey availability. Thus, we conducted a field study in twelve floodplain pond mesocosms (FPMs), six were treated with Bti (2.88 x 109 ITU/ha, VectoBac WDG) three times, to investigate if the Bti-induced shift in chironomid emergence dynamics is reflected in their nutritional value and in the diet of riparian spiders. We measured the content of proteins, lipids, glycogen, and carbohydrates in emerged Chironomidae, and determined the stable isotope ratios of female Tetragnatha extensa, a web-building spi-der living in the riparian vegetation of the FPMs. We analysed the proportion of aquatic prey in spiders' diet, niche size, and trophic position. While the content of nutrients and thus the prey quality was not significantly altered by Bti, ef-fects on the spiders' diet were observed. The trophic position of T. extensa from Bti-treated FPMs was lower compared to the control while the aquatic proportion was only minimally reduced. We assume that spiders fed more on terrestrial prey but also on other aquatic organisms such as Baetidae, whose emergence was unaffected by Bti. In contrast to the partly predaceous Chironomidae, consumption of aquatic and terrestrial primary consumers potentially explains the observed lower trophic position of spiders from Bti-treated FPMs. As prey organisms vary in their quality the suggested dietary shift could transfer previously observed effects of Bti to riparian spiders conceivably affecting their populations. Our results further support that anthropogenic stressors in aquatic ecosystems may translate to terrestrial predators through aquatic subsidy

    Effects of temporal floral resource availability and non-crop habitats on broad bean pollination

    Get PDF
    Context Flowering plants can enhance wild insect populations and their pollination services to crops in agricultural landscapes, especially when they flower before the focal crop. However, characterizing the temporal availability of specific floral resources is a challenge. Objectives Developing an index for the availability of floral resources at the landscape scale according to the specific use by a pollinator. Investigating whether detailed and temporally-resolved floral resource maps predict pollination success of broad bean better than land cover maps. Methods We mapped plant species used as pollen source by bumblebees in 24 agricultural landscapes and developed an index of floral resource availability for different times of the flowering season. To measure pollination success, patches of broad bean (Vicia faba), a plant typically pollinated by bumblebees, were exposed in the center of selected landscapes. Results Higher floral resource availability before bean flowering led to enhanced seed set. Floral resource availability synchronous to broad bean flowering had no effect. Seed set was somewhat better explained by land cover maps than by floral resource availability, increasing with urban area and declining with the cover of arable land. Conclusions The timing of alternative floral resource availability is important for crop pollination. The higher explanation of pollination success by land cover maps than by floral resource availability indicates that additional factors such as habitat disturbance and nesting sites play a role in pollination. Enhancing non-crop woody plants in agricultural landscapes as pollen sources may ensure higher levels of crop pollination by wild pollinators such as bumblebees

    Benthic macroinvertebrate community shifts based on Bti-induced chironomid reduction also decrease Odonata emergence

    Get PDF
    Chironomid larvae (Diptera: Chironomidae) often dominate aquatic macroinvertebrate communities and are a key food source for many aquatic predators, such as dragonfly and damselfly larvae (Odonata). Changes in aquatic macroinvertebrate communities may propagate through terrestrial food webs via altered insect emergence. Bacillus thuringiensis israelensis (Bti)-based larvicides are widely used in mosquito control but can also reduce the abundance of non-biting chironomid larvae. We applied the maximum field rate of Bti used in mosquito control three times to six mesocosms in a replicated floodplain pond mesocosm (FPM) system in spring for two consecutive years, while the remaining six FPMs were untreated. Three weeks after the third Bti application in the first year, we recorded on average a 41% reduction of chironomid larvae in Bti-treated FPMs compared to untreated FPMs and a shift in benthic macroinvertebrate community composition driven by the reduced number of chironomid, Libellulidae and Coenagrionidae larvae (Odonata). Additionally, the number of emerging Libellulidae (estimated by sampling of exuviae in the second year) was reduced by 54% in Bti-treated FPMs. Since Odonata larvae are not directly susceptible to Bti, our results suggest indirect effects due to reduced prey availability (i.e., chironomid larvae) or increased intraguild predation. As Libellulidae include species of conservation concern, the necessity of Bti applications to their habitats, e.g. floodplains, should be carefully evaluated

    Comparing floral resource maps and land cover maps to predict predators and aphid suppression on field bean

    Get PDF
    Context Predatory insects contribute to the natural control of agricultural pests, but also use plant pollen or nectar as supplementary food resources. Resource maps have been proposed as an alternative to land cover maps for prediction of beneficial insects. Objectives We aimed at predicting the abundance of crop pest predating insects and the pest control service they provide with both, detailed flower resource maps and land cover maps. Methods We selected 19 landscapes of 500 m radius and mapped them with both approaches. In the centres of the landscapes, aphid predators – hoverflies (Diptera: Syrphidae), ladybeetles (Coleoptera: Coccinellidae) and lacewings (Neuroptera: Chrysopidae) – were surveyed in experimentally established faba bean phytometers (Vicia faba L. Var. Sutton Dwarf) and their control of introduced black bean aphids (Aphis fabae Scop.) was recorded. Results Landscapes with higher proportions of forest edge as derived from land cover maps supported higher abundance of aphid predators, and high densities of aphid predators reduced aphid infestation on faba bean. Floral resource maps did not significantly predict predator abundance or aphid control services. Conclusions Land cover maps allowed to relate landscape composition with predator abundance, showing positive effects of forest edges. Floral resource maps may have failed to better predict predators because other resources such as overwintering sites or alternative prey potentially play a more important role than floral resources. More research is needed to further improve our understanding of resource requirements beyond floral resource estimations and our understanding of their role for aphid predators at the landscape scale

    Comparing floral resource maps and land cover maps to predict predators and aphid suppression on field bean

    Get PDF
    Context Predatory insects contribute to the natural control of agricultural pests, but also use plant pollen or nectar as supplementary food resources. Resource maps have been proposed as an alternative to land cover maps for prediction of beneficial insects. Objectives We aimed at predicting the abundance of crop pest predating insects and the pest control service they provide with both, detailed flower resource maps and land cover maps. Methods We selected 19 landscapes of 500 m radius and mapped them with both approaches. In the centres of the landscapes, aphid predators – hoverflies (Diptera: Syrphidae), ladybeetles (Coleoptera: Coccinellidae) and lacewings (Neuroptera: Chrysopidae) – were surveyed in experimentally established faba bean phytometers (Vicia faba L. Var. Sutton Dwarf) and their control of introduced black bean aphids (Aphis fabae Scop.) was recorded. Results Landscapes with higher proportions of forest edge as derived from land cover maps supported higher abundance of aphid predators, and high densities of aphid predators reduced aphid infestation on faba bean. Floral resource maps did not significantly predict predator abundance or aphid control services. Conclusions Land cover maps allowed to relate landscape composition with predator abundance, showing positive effects of forest edges. Floral resource maps may have failed to better predict predators because other resources such as overwintering sites or alternative prey potentially play a more important role than floral resources. More research is needed to further improve our understanding of resource requirements beyond floral resource estimations and our understanding of their role for aphid predators at the landscape scale

    Non-bee insects are important contributors to global crop pollination

    Get PDF
    Wild andmanaged bees arewell documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.Peer Reviewe
    corecore