137 research outputs found

    Constitutively Active CaMKKα Stimulates Skeletal Muscle Glucose Uptake in Insulin-Resistant Mice In Vivo

    Get PDF
    In insulin-sensitive skeletal muscle, the expression of constitutively active Ca(2+)/calmodulin-dependent protein kinase kinase α (caCaMKKα) stimulates glucose uptake independent of insulin signaling (i.e., Akt and Akt-dependent TBC1D1/TBC1D4 phosphorylation). Our objectives were to determine whether caCaMKKα could stimulate glucose uptake additively with insulin in insulin-sensitive muscle, in the basal state in insulin-resistant muscle, and if so, to determine whether the effects were associated with altered TBC1D1/TBC1D4 phosphorylation. Mice were fed a control or high-fat diet (60% kcal) for 12 weeks to induce insulin resistance. Muscles were transfected with empty vector or caCaMKKα plasmids using in vivo electroporation. After 2 weeks, caCaMKKα protein was robustly expressed. In insulin-sensitive muscle, caCaMKKα increased basal in vivo [(3)H]-2-deoxyglucose uptake approximately twofold, insulin increased glucose uptake approximately twofold, and caCaMKKα plus insulin increased glucose uptake approximately fourfold. caCaMKKα did not increase basal TBC1D1 (Ser(237), Thr(590), Ser(660), pan-Thr/Ser) or TBC1D4 (Ser(588), Thr(642), pan-Thr/Ser) phosphorylation. In insulin-resistant muscle, caCaMKKα increased basal glucose uptake approximately twofold, and attenuated high-fat diet–induced basal TBC1D1 (Thr(590), pan-Thr/Ser) and TBC1D4 (Ser(588), Thr(642), pan-Thr/Ser) phosphorylation. In cell-free assays, CaMKKα increased TBC1D1 (Thr(590), pan-Thr/Ser) and TBC1D4 (Ser(588), pan-Thr/Ser) phosphorylation. Collectively, these results demonstrate that caCaMKKα stimulates glucose uptake additively with insulin, and in insulin-resistant muscle, and alters the phosphorylation of TBC1D1/TBC1D4

    Cholecystokinin Activates a Variety of Intracellular Signal Transduction Mechanisms in Rodent Pancreatic Acinar Cells

    Full text link
    Cholecystokinin (CCK) acting through its G protein-coupled receptor is now known to activate a variety of intracellular signaling mechanisms and thereby regulate a complex array of cellular functions in pancreatic acinar cells. The best studied mechanism is the coupling through heterotrimeric G proteins of the G q family to activate a phospholipase C leading to an increase in inositol trisphosphate and release of intracellular Ca 2+ . This pathway along with protein kinase C activation in response to the increase in diacylglycerol stimulates the secretion of digestive enzymes by the process of exocytosis. CCK also activates signaling pathways in acini more related to other processes. The three mitogen activated protein kinase cascades leading to ERKs, JNKs and p38 MAPK are all activated by CCK. CCK activates the ERK cascade by PKC activation of Raf which in turn activates MEK and ERKs. JNKs are activated by a distinct mechanism whish requires higher concentrations of CCK. Both ERKs and JNKs are presumed to regulate gene expression. CCK activation of p38 MAPK also plays a role in regulating the actin cytoskeleton through phosphorylation of the small heat shock protein HSP27. The PI3K-PKB-mTOR pathway is activated by CCK and plays a major role in regulating protein synthesis at the translational level. This includes both activation of p70 S6K leading to phosphorylation of ribosomal protein S6 and the phosphorylation of the binding protein for initiation factor 4E leading to formation of the mRNA cap binding complex. Other signaling pathways activated by CCK receptors include NF-κB and a variety of tyrosine kinases. Further work is needed to understand how CCK receptors activate most of the above pathways and to better understand the biological events regulated by these diverse signaling pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72562/1/j.1600-0773.2002.910606.x.pd

    Structure and Dynamics of Cholesterol-Containing Polyunsaturated Lipid Membranes Studied by Neutron Diffraction and NMR

    Get PDF
    A direct and quantitative analysis of the internal structure and dynamics of a polyunsaturated lipid bilayer composed of 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0-22:6n3-PC) containing 29 mol% cholesterol was carried out by neutron diffraction, 2H-NMR and 13C-MAS NMR. Scattering length distribution functions of cholesterol segments as well as of the sn-1 and sn-2 hydrocarbon chains of 18:0-22:6n3-PC were obtained by conducting experiments with specifically deuterated cholesterol and lipids. Cholesterol orients parallel to the phospholipids, with the A-ring near the lipid glycerol and the terminal methyl groups 3 Å away from the bilayer center. Previously, we reported that the density of polyunsaturated docosahexaenoic acid (DHA, 22:6n3) chains was higher near the lipid–water interface. Addition of cholesterol partially redistributes DHA density from near the lipid–water interface to the center of the hydrocarbon region. Cholesterol raises chain-order parameters of both stearic acid and DHA chains. The fractional order increase for stearic acid methylene carbons C8–C18 is larger, reflecting the redistribution of DHA chain density toward the bilayer center. The correlation times of DHA chain isomerization are short and mostly unperturbed by the presence of cholesterol. The uneven distribution of saturated and polyunsaturated chain densities and the cholesterol-induced balancing of chain distributions may have important implications for the function and integrity of membrane receptors, such as rhodopsin

    CP-31398, a putative p53-stabilizing molecule tested in mammalian cells and in yeast for its effects on p53 transcriptional activity

    Get PDF
    BACKGROUND: CP-31398 is a small molecule that has been reported to stabilize the DNA-binding core domain of the human tumor suppressor protein p53 in vitro. The compound was also reported to function as a potential anti-cancer drug by rescuing the DNA-binding activity and, consequently, the transcription activation function of mutant p53 protein in mammalian tissue culture cells and in mice. RESULTS: We performed a series of gene expression experiments to test the activity of CP-31398 in yeast and in human cell cultures. With these cell-based assays, we were unable to detect any specific stimulation of mutant p53 activity by this compound. Concentrations of CP-31398 that were reported to be active in the published work were highly toxic to the human H1299 lung carcinoma and Saos-2 cell lines in our experiments. CONCLUSION: In our experiments, the small molecule CP-31398 was unable to reactivate mutant p53 protein. The results of our in vivo experiments are in agreement with the recently published biochemical analysis of CP-31398 showing that this molecule does not bind p53 as previously claimed, but intercalates into DNA

    Omega-3 Fatty Acids from Fish Oil Lower Anxiety, Improve Cognitive Functions and Reduce Spontaneous Locomotor Activity in a Non-Human Primate

    Get PDF
    Omega-3 (ω3) polyunsaturated fatty acids (PUFA) are major components of brain cells membranes. ω3 PUFA-deficient rodents exhibit severe cognitive impairments (learning, memory) that have been linked to alteration of brain glucose utilization or to changes in neurotransmission processes. ω3 PUFA supplementation has been shown to lower anxiety and to improve several cognitive parameters in rodents, while very few data are available in primates. In humans, little is known about the association between anxiety and ω3 fatty acids supplementation and data are divergent about their impact on cognitive functions. Therefore, the development of nutritional studies in non-human primates is needed to disclose whether a long-term supplementation with long-chain ω3 PUFA has an impact on behavioural and cognitive parameters, differently or not from rodents. We address the hypothesis that ω3 PUFA supplementation could lower anxiety and improve cognitive performances of the Grey Mouse Lemur (Microcebus murinus), a nocturnal Malagasy prosimian primate. Adult male mouse lemurs were fed for 5 months on a control diet or on a diet supplemented with long-chain ω3 PUFA (n = 6 per group). Behavioural, cognitive and motor performances were measured using an open field test to evaluate anxiety, a circular platform test to evaluate reference spatial memory, a spontaneous locomotor activity monitoring and a sensory-motor test. ω3-supplemented animals exhibited lower anxiety level compared to control animals, what was accompanied by better performances in a reference spatial memory task (80% of successful trials vs 35% in controls, p<0.05), while the spontaneous locomotor activity was reduced by 31% in ω3-supplemented animals (p<0.001), a parameter that can be linked with lowered anxiety. The long-term dietary ω3 PUFA supplementation positively impacts on anxiety and cognitive performances in the adult mouse lemur. The supplementation of human food with ω3 fatty acids may represent a valuable dietary strategy to improve behavioural and cognitive functions

    Improving a Natural CaMKII Inhibitor by Random and Rational Design

    Get PDF
    CaM-KIIN has evolved to inhibit stimulated and autonomous activity of the Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) efficiently, selectively, and potently (IC50 ∼100 nM). The CN class of peptides, derived from the inhibitory region of CaM-KIIN, provides powerful new tools to study CaMKII functions. The goal of this study was to identify the residues required for CaMKII inhibition, and to assess if artificial mutations could further improve the potency achieved during evolution.First, the minimal region with full inhibitory potency was identified (CN19) by determining the effect of truncated peptides on CaMKII activity in biochemical assays. Then, individual residues of CN19 were mutated. Most individual Ala substitutions decreased potency of CaMKII inhibition, however, P3A, K13A, and R14A increased potency. Importantly, this initial Ala scan suggested a specific interaction of the region around R11 with the CaMKII substrate binding site, which was exploited for further rational mutagenesis to generate an optimized pseudo-substrate sequence. Indeed, the potency of the optimized peptide CN19o was >250fold improved (IC50 <0.4 nM), and CN19o has characteristics of a tight-binding inhibitor. The selectivity for CaMKII versus CaMKI was similarly improved (to almost 100,000fold for CN19o). A phospho-mimetic S12D mutation decreased potency, indicating potential for regulation by cellular signaling. Consistent with importance of this residue in inhibition, most other S12 mutations also significantly decreased potency, however, mutation to V or Q did not.These results provide improved research tools for studying CaMKII function, and indicate that evolution fine-tuned CaM-KIIN not for maximal potency of CaMKII inhibition, but for lower potency that may be optimal for dynamic regulation of signal transduction

    Calcium Regulation of EGF-Induced ERK5 Activation: Role of Lad1-MEKK2 Interaction

    Get PDF
    The ERK5 cascade is a MAPK pathway that transmits both mitogenic and stress signals, yet its mechanism of activation is not fully understood. Using intracellular calcium modifiers, we found that ERK5 activation by EGF is inhibited both by the depletion and elevation of intracellular calcium levels. This calcium effect was found to occur upstream of MEKK2, which is the MAP3K of the ERK5 cascade. Co-immunoprecipitation revealed that EGF increases MEKK2 binding to the adaptor protein Lad1, and this interaction was reduced by the intracellular calcium modifiers, indicating that a proper calcium concentration is required for the interactions and transmission of EGF signals to ERK5. In vitro binding assays revealed that the proper calcium concentration is required for a direct binding of MEKK2 to Lad1. The binding of these proteins is not affected by c-Src-mediated phosphorylation on Lad1, but slightly affects the Tyr phosphorylation of MEKK2, suggesting that the interaction with Lad1 is necessary for full Tyr phosphorylation of MEKK2. In addition, we found that changes in calcium levels affect the EGF-induced nuclear translocation of MEKK2 and thereby its effect on the nuclear ERK5 activity. Taken together, these findings suggest that calcium is required for EGF-induced ERK5 activation, and this effect is probably mediated by securing proper interaction of MEKK2 with the upstream adaptor protein Lad1

    Computational Prediction and Experimental Verification of New MAP Kinase Docking Sites and Substrates Including Gli Transcription Factors

    Get PDF
    In order to fully understand protein kinase networks, new methods are needed to identify regulators and substrates of kinases, especially for weakly expressed proteins. Here we have developed a hybrid computational search algorithm that combines machine learning and expert knowledge to identify kinase docking sites, and used this algorithm to search the human genome for novel MAP kinase substrates and regulators focused on the JNK family of MAP kinases. Predictions were tested by peptide array followed by rigorous biochemical verification with in vitro binding and kinase assays on wild-type and mutant proteins. Using this procedure, we found new ‘D-site’ class docking sites in previously known JNK substrates (hnRNP-K, PPM1J/PP2Czeta), as well as new JNK-interacting proteins (MLL4, NEIL1). Finally, we identified new D-site-dependent MAPK substrates, including the hedgehog-regulated transcription factors Gli1 and Gli3, suggesting that a direct connection between MAP kinase and hedgehog signaling may occur at the level of these key regulators. These results demonstrate that a genome-wide search for MAP kinase docking sites can be used to find new docking sites and substrates

    Expression of Calmodulin and Myosin Light Chain Kinase during Larval Settlement of the Barnacle Balanus amphitrite

    Get PDF
    Barnacles are one of the most common organisms in intertidal areas. Their life cycle includes seven free-swimming larval stages and sessile juvenile and adult stages. The transition from the swimming to the sessile stages, referred to as larval settlement, is crucial for their survivor success and subsequent population distribution. In this study, we focused on the involvement of calmodulin (CaM) and its binding proteins in the larval settlement of the barnacle, Balanus ( = Amphibalanus) amphitrite. The full length of CaM gene was cloned from stage II nauplii of B. amphitrite (referred to as Ba-CaM), encoding 149 amino acid residues that share a high similarity with published CaMs in other organisms. Quantitative real-time PCR showed that Ba-CaM was highly expressed in cyprids, the stage at which swimming larvae are competent to attach and undergo metamorphosis. In situ hybridization revealed that the expressed Ba-CaM gene was localized in compound eyes, posterior ganglion and cement glands, all of which may have essential functions during larval settlement. Larval settlement assays showed that both the CaM inhibitor compound 48/80 and the CaM-dependent myosin light chain kinase (MLCK) inhibitor ML-7 effectively blocked barnacle larval settlement, whereas Ca2+/CaM-dependent kinase II (CaMKII) inhibitors did not show any clear effects. The subsequent real-time PCR assay showed a higher expression level of Ba-MLCK gene in larval stages than in adults, suggesting an important role of Ba-MLCK gene in larval development and competency. Overall, the results suggest that CaM and CaM-dependent MLCK function during larval settlement of B. amphitrite
    corecore