128 research outputs found

    Effects of Peer Mentoring on Types of Mentor Support, Program Satisfaction and Graduate Student Stress: A Dyadic Perspective

    Get PDF
    Examines the effects of a graduate student peer-mentoring program from the perspectives of both members of the mentoring dyad, the mentors and proteges. Results indicate that peer mentoring provides students with both increased levels of psychosocial and instrumental support, and that those with high levels of support are more satisfied with their peer mentoring relationships

    Dressed States of a two component Bose-Einstein Condensate

    Full text link
    A condensate with two internal states coupled by external electromagnetic radiation, is described by coupled Gross Pitaevskii equations, whose eigenstates are analogous to the dressed states of quantum optics. We solve for these eigenstates numerically in the case of one spatial dimension, and explore their properties as a function of system parameters. In contrast to the quantum optical case, the condensate dressed states exhibit spatial behaviour which depends on the system parameters, and can be manipulated by changing the cw external field.Comment: 6 pages, including 6 figures. This paper was presented at ACOLS98, and is submitted to a special issue of J. Opt.

    Recent Experiments with Bose-Condensed Gases at JILA

    Full text link
    We consider a binary mixture of two overlapping Bose-Einstein condensates in two different hyperfine states of \Rb87 with nearly identical magnetic moments. Such a system has been simply realized through application of radiofrequency and microwave radiation which drives a two-photon transition between the two states. The nearly identical magnetic moments afford a high degree of spatial overlap, permitting a variety of new experiments. We discuss some of the conditions under which the magnetic moments are identical, with particular emphasis placed on the requirements for a time-averaged orbiting potential (TOP) magnetic trap.Comment: 9 pages, 5 figures; corrected post-publication editio

    Master-slave principle applied to an electrically tunable swept source-OCT system

    Get PDF
    In this communication, we evaluate the suitability of Master-Slave (MS) optical coherence tomography (OCT) for processing of interferograms generated by an interferometer driven by an akinetic, electrically-tunable swept source from Insight with an ultra-large instantaneous coherence length. The akinetic source is programmed to sweep linearly, but within the sweep, at predictable times, the laser tuning introduces invalid regions in the interferogram, which are normally removed post-acquisition using a pre-calibration file. This makes sure that any optical frequency component is used once only and enables correct operation of a Fourier transform (FT). A FT applied to an unprocessed emitted spectrum leads to wide and numerous peaks in the A-scan. MS processing was introduced to avoid the necessary corrections demanded by conventional FT signal processing or its derivatives. The MS procedure consists of comparing photo-detected signals at the output of two interferometers, a Slave and a Master interferometer. The MS method was advanced along two avenues, either by using (i) electricallygenerated master signals (making use of the same interferometer twice) or (ii) optically-generated master signal via a recently introduced MS down-conversion procedure. We apply both avenues to the Insight source. Approach (i) tests the MS principle as an alternative to the Insight file correction while (ii) demonstrates near coherencelimited operation at a large axial range (>80 mm) for which a too-high sampling rate digitizer would have been needed. In this communication, we evaluate for the first time the suitability of the MS procedure to OCT measurements performed with the akinetic swept source commercialized by Insight. Two modalities are evaluated to implement the MS processing, based on: (i) digital generation of the master signals using the OCT interferometer and (ii) down conversion using a second interferometer driven by the swept source

    Momentum distribution of confined bosons: temperature dependence

    Full text link
    The momentum distribution function of a parabolically confined gas of bosons with harmonic interparticle interactions is derived. In the Bose-Einstein condensation region, this momentum distribution substantially deviates from a Maxwell-Boltzmann distribution. It is argued that the determination of the temperature of the boson gas from the Bose-Einstein momentum distribution function is more appropriate than the currently used fitting to the high momentum tail of the Maxwell-Boltzmann distribution.Comment: 5 REVTEX pages + 2 postscript figures. Accepted in Phys. Rev.

    Bose-Einstein condensation in a stiff TOP trap with adjustable geometry

    Full text link
    We report on the realisation of a stiff magnetic trap with independently adjustable trap frequencies, ωz\omega_z and ωr\omega_r, in the axial and radial directions respectively. This has been achieved by applying an axial modulation to a Time-averaged Orbiting Potential (TOP) trap. The frequency ratio of the trap, ωz/ωr\omega_z / \omega_r, can be decreased continuously from the original TOP trap value of 2.83 down to 1.6. We have transferred a Bose-Einstein condensate (BEC) into this trap and obtained very good agreement between its observed anisotropic expansion and the hydrodynamic predictions. Our method can be extended to obtain a spherical trapping potential, which has a geometry of particular theoretical interest.Comment: 4 pages, 3 figure

    Bose-Einstein condensation in shallow traps

    Full text link
    In this paper we study the properties of Bose-Einstein condensates in shallow traps. We discuss the case of a Gaussian potential, but many of our results apply also to the traps having a small quadratic anharmonicity. We show the errors introduced when a Gaussian potential is approximated with a parabolic potential, these errors can be quite large for realistic optical trap parameter values. We study the behavior of the condensate fraction as a function of trap depth and temperature and calculate the chemical potential of the condensate in a Gaussian trap. Finally we calculate the frequencies of the collective excitations in shallow spherically symmetric and 1D traps.Comment: 6 pages, 4 figure

    Quantum Dynamics of Three Coupled Atomic Bose-Einstein Condensates

    Get PDF
    The simplest model of three coupled Bose-Einstein Condensates (BEC) is investigated using a group theoretical method. The stationary solutions are determined using the SU(3) group under the mean field approximation. This semiclassical analysis using the system symmetries shows a transition in the dynamics of the system from self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics are investigated by examination of the stable points and our analysis shows the structure of the stable points depends on the ratio of the condensate coupling to the particle-particle interaction, undergoes bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which also displays the dynamical transition. The quantum case has collapse and revival sequences superposed on the semiclassical dynamics reflecting the underlying discreteness of the spectrum. Non-zero circular current states are also demonstrated as one of the higher dimensional effects displayed in this system.Comment: Accepted to PR

    Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas

    Full text link
    We have observed the superfluid phase transition in a strongly interacting Fermi gas via high-precision measurements of the local compressibility, density and pressure down to near-zero entropy. Our data completely determine the universal thermodynamics of strongly interacting fermions without any fit or external thermometer. The onset of superfluidity is observed in the compressibility, the chemical potential, the entropy, and the heat capacity. In particular, the heat capacity displays a characteristic lambda-like feature at the critical temperature of Tc/TF=0.167(13)T_c/T_F = 0.167(13). This is the first clear thermodynamic signature of the superfluid transition in a spin-balanced atomic Fermi gas. Our measurements provide a benchmark for many-body theories on strongly interacting fermions, relevant for problems ranging from high-temperature superconductivity to the equation of state of neutron stars.Comment: 11 pages, 8 figure

    The Energy of a Trapped Interacting Bose Gas

    Full text link
    A Bose gas in an external potential is studied by means of the semi-classical approximation. Analytical results are derived for the energy of an interacting Bose gas in a generic power-law trapping potential. An expression for the chemical potential below the critical temperature is also obtained. The theoretical results are in qualitative agreement with a recent energy measurement.Comment: 6 pages, REVTex, one figure
    • …
    corecore