16 research outputs found

    ACE2/ADAM17/TMPRSS2 interplay may be the main risk factor for COVID-19

    Get PDF
    The Coronavirus Disease 2019 (COVID-19) has already caused hundreds of thousands of deaths worldwide in a few months. Cardiovascular disease, hypertension, diabetes and chronic lung disease have been identified as the main COVID-19 comorbidities. Moreover, despite similar infection rates between men and women, the most severe course of the disease is higher in elderly and co-morbid male patients. Therefore, the occurrence of specific comorbidities associated with renin–angiotensin system (RAS) imbalance mediated by the interaction between angiotensin-converting enzyme 2 (ACE2) and desintegrin and metalloproteinase domain 17 (ADAM17), along with specific genetic factors mainly associated with type II transmembrane serine protease (TMPRSS2) expression, could be decisive for the clinical outcome of COVID-19. Indeed, the exacerbated ADAM17—mediated ACE2, TNF-α, and IL-6R secretion emerges as a possible underlying mechanism for the acute inflammatory immune response and the activation of the coagulation cascade. Therefore, in this review, we focus on the main pathophysiological aspects of ACE2, ADAM17, and TMPRSS2 host proteins in COVID-19. Additionally, we discuss a possible mechanism to explain the deleterious effect of ADAM17 and TMPRSS2 over-activation in the COVID-19 outcome

    Integration of Trypanosoma cruzi kDNA minicircle sequence in the host genome may be associated with autoimmune serum factors in chagas disease patients

    Get PDF
    ABSTRACT: Integration of kDNA sequences within the genome of the host cell shown by PCR amplification with primers to the conserved Trypanosoma cruzi kDNA minicircle sequence was confirmed by Southern hybridization with specific probes. The cells containing the integrated kDNA sequences were then perpetuated as transfected macrophage subclonal lines. The kDNA transfected macrophages expressed membrane antigens that were recognized by antibodies in a panel of sera from ten patients with chronic Chagas disease. These antigens barely expressed in the membrane of uninfected, control macrophage clonal lines were recognized neither by factors in the control, non-chagasic subjects nor in the chagasic sera. This finding suggests the presence of an autoimmune antibody in the chagasic sera that recognizes auto-antigens in the membrane of T. cruzi kDNA transfected macrophage subclonal lines

    Increased prevalence of unstable HLA-C variants in HIV-1 rapid-progressor patients

    Get PDF
    HIV-1 infection in the absence of treatment results in progression toward AIDS. Host genetic factors play a role in HIV-1 pathogenesis, but complete knowledge is not yet available. Since less-expressed HLA-C variants are associated with poor HIV-1 control and unstable HLA-C variants are associated with higher HIV-1 infectivity, we investigated whether there was a correlation between the different stages of HIV-1 progression and the presence of specific HLA-C allotypes. HLA-C genotyping was performed using allele-specific PCR by analyzing a treatment-naĂŻve cohort of 96 HIV-1-infected patients from multicentric cohorts in the USA, Canada, and Brazil. HIV-1-positive subjects were classified according to their different disease progression status as progressors (Ps, n = 48), long-term non-progressors (LTNPs, n = 37), and elite controllers (ECs, n = 11). HLA-C variants were classified as stable or unstable according to their binding stability to ÎČ2-microglobulin/peptide complex. Our results showed a significant correlation between rapid progression to AIDS and the presence of two or one unstable HLA-C variants (p-value: 0.0078, p-value: 0.0143, respectively). These findings strongly suggest a link between unstable HLA-C variants both at genotype and at allele levels and rapid progression to AIDS. This work provides further insights into the impact of host genetic factors on AIDS progression

    Current millennium biotechniques for biomedical research on parasites and host-parasite interactions

    Get PDF
    The development of biotechnology in the last three decades has generated the feeling that the newest scientific achievements will deliver high standard quality of life through abundance of food and means for successfully combating diseases. Where the new biotechnologies give access to genetic information, there is a common belief that physiological and pathological processes result from subtle modifications of gene expression. Trustfully, modern genetics has produced genetic maps, physical maps and complete nucleotide sequences from 141 viruses, 51 organelles, two eubacteria, one archeon and one eukaryote (Saccharomices cerevisiae). In addition, during the Centennial Commemoration of the Oswaldo Cruz Institute the nearly complete human genome map was proudly announced, whereas the latest Brazilian key stone contribution to science was the publication of the Shillela fastidiosa genomic sequence highlythed on a Nature cover issue. There exists a belief among the populace that further scientific accomplishments will rapidly lead to new drugs and methodological approaches to cure genetic diseases and other incurable ailments. Yet, much evidence has been accumulated, showing that a large information gap exists between the knowledge of genome sequence and our knowledge of genome function. Now that many genome maps are available, people wish to know what are we going to do with them. Certainly, all these scientific accomplishments will shed light on many more secrets of life. Nevertheless, parsimony in the weekly announcements of promising scientific achievements is necessary. We also need many more creative experimental biologists to discover new, as yet un-envisaged biotechnological approaches, and the basic resource needed for carrying out mile stone research necessary for leading us to that "promised land"often proclaimed by the mass media

    Hitchhiking Trypanosoma cruzi minicircle DNA affects gene expression in human host cells via LINE-1 retrotransposon

    Get PDF
    The horizontal transfer of Trypanosoma cruzi mitochondrial minicircle DNA to the genomes of naturally infected humans may play an important role in the pathogenesis of Chagas disease. Minicircle integrations within LINE-1 elements create the potential for foreign DNA mobility within the host genome via the machinery associated with this retrotransposon. Here we document integration of minicircle DNA fragments in clonal human macrophage cell lines and their mobilization over time. The movement of an integration event in a clonal transfected cell line was tracked at three months and three years post-infection. The minicircle sequence integrated into a LINE-1 retrotransposon; one such foreign fragment subsequently relocated to another genomic location in association with associated LINE-1 elements. The p15 locus was altered at three years as a direct effect of minicircle/LINE-1 acquisition, resulting in elimination of p15 mRNA. Here we show for the first time a molecular pathology stemming from mobilization of a kDNA/LINE-1 mutation. These genomic changes and detected transcript variations are consistent with our hypothesis that minicircle integration is a causal component of parasite-independent, autoimmune-driven lesions seen in the heart and other target tissues associated with Chagas disease

    A1AT polymorphisms may be associated with clinical characteristics of retrovirus infections in a mixed ethnic population from the Brazilian Amazon region

    No full text
    Objectives: This study investigated the association of alpha-1-antrypsin deficiency (A1AT; S and Z polymorphisms) with HIV-1 and HTLV-1 infection. Methods: Blood samples from 201 HIV-1-infected and 115 HTLV-1-infected individuals were examined and compared with those from 300 healthy controls. Genotyping of A1AT (S and Z) and quantification of plasma viral load were performed using RT-PCR, and the CD4+/CD8+ T-cell count was determined by flow cytometry. Results: The wild-type MM genotype showed the highest frequency in each of the three groups investigated. SS and ZZ homozygous genotypes (variants) were observed only among HTLV-1 patients and controls, respectively. Genotype MS was significantly less frequent in HTLV-1-positive persons than in controls. Statistically significant differences were observed when comparing genotype frequencies between symptomatic and asymptomatic HTLV-1-infected persons. The distribution of plasma HIV-1 viral load among individuals with different genotypes of A1AT polymorphism also differed significantly. Conclusions: The results suggest that A1AT polymorphisms may be associated with human retrovirus infections when dealing with an ethnically mixed population from the Amazon region of Brazil. Keywords: A1T1, Polymorphisms, HIV-1, HTLV-

    Alpha‐1‐antitrypsin : a possible host protective factor against Covid‐19

    No full text
    Understanding Covid‐19 pathophysiology is crucial for a better understanding of the disease and development of more effective treatments. Alpha‐1‐antitrypsin (A1AT) is a constitutive tissue protector with antiviral and anti‐inflammatory properties. A1AT inhibits SARS‐CoV‐2 infection and two of the most important proteases in the pathophysiology of Covid‐19: the transmembrane serine protease 2 (TMPRSS2) and the disintegrin and metalloproteinase 17 (ADAM17). It also inhibits the activity of inflammatory molecules, such as IL‐8, TNF‐α, and neutrophil elastase (NE). TMPRSS2 is essential for SARS‐CoV‐2‐S protein priming and viral infection. ADAM17 mediates ACE2, IL‐6R, and TNF‐α shedding. ACE2 is the SARS‐CoV‐2 entry receptor and a key component for the balance of the renin‐angiotensin system, inflammation, vascular permeability, and pulmonary homeostasis. In addition, clinical findings indicate that A1AT levels might be important in defining Covid‐19 outcomes, potentially partially explaining associations with air pollution and with diabetes. In this review, we focused on the interplay between A1AT with TMPRSS2, ADAM17 and immune molecules, and the role of A1AT in the pathophysiology of Covid‐19, opening new avenues for investigating effective treatments

    PersistĂȘncia das infecçÔes em pacientes chagĂĄsicos crĂŽnicos tratados com nitroderivados anti-Trypanosoma cruzi

    Get PDF
    Usamos um mĂ©todo molecular e demonstramos que o tratamento de infecçÔes crĂŽnicas pelo Trypanosoma cruzi com nitroderivados, que se mostraram eficientes em diminuir parasitemias nas infecçÔes agudas, nĂŁo produziu cura parasitolĂłgica. Trinta e quatro chagĂĄsicos crĂŽnicos, com pelo menos dois entre trĂȘs testes sorolĂłgicos positivos para a infecção, e 17 controles com testes sorolĂłgicos negativos formaram os grupos de estudo. Os testes de PCR com primers de DNA de T. cruzi monitoraram a eficĂĄcia do tratamento. Foram obtidos produtos de PCR a partir de DNA de pacientes chagĂĄsicos tratados e nĂŁo-tratados, com primers de DNA nuclear de T. cruzi. Os produtos amplificados hibridizaram com suas sequĂȘncias internas e complementares. A tĂ©cnica de PCR competitiva foi usada para quantificar o nĂșmero de parasitos no sangue e revelou < 1 a 75 T. cruzi/ml em chagĂĄsicos nĂŁo-tratados (mĂ©dia 25,83 ± 26,32) e < 1 a 36 T. cruzi/ml em chagĂĄsicos tratados (mĂ©dia 6,45 ± 9,28). A diferença entre as mĂ©dias nĂŁo foi estatisticamente significativa. O resultado mostra que o tratamento da doença de Chagas crĂŽnica com drogas nitroderivadas Ă© insatisfatĂłrio.We used a molecular method and demonstrated that treatment of the chronic human Trypanosoma cruzi infections with nitroderivatives did not lead to parasitological cure. Seventeen treated and 17 untreated chronic Chagas’ disease patients, with at least two out of three positive serologic assays for the infection, and 17 control subjects formed the study groups. PCR assays with nested sets of T. cruzi DNA primers monitored the efficacy of treatment. The amplification products were hybridized to their complementary internal sequences. Untreated and treated Chagas’ disease patients yielded PCR amplification products with T. cruzi nuclear DNA primers. Competitive PCR was conducted to determine the quantity of parasites in the blood and revealed < 1 to 75 T. cruzi/ml in untreated (means 25.83 ± 26.32) and < 1 to 36 T. cruzi/ml in treated (means 6.45 ± 9.28) Chagas’ disease patients. The difference between the means was not statistically significant. These findings reveal a need for precise definition of the role of treatment of chronic Chagas’ disease patients with nitrofuran and nitroimidazole compounds
    corecore