2,281 research outputs found

    Interfacial tension behavior of binary and ternary mixtures of partially miscible Lennard-Jones fluids: a molecular dynamics simulation

    Full text link
    By means of extensive equilibrium molecular dynamics simulations we have investigated, the behavior of the interfacial tension γ\gamma of two immiscible symmetrical Lennard-Jones fluids. This quantity is studied as function of reduced temperature T=kBTϵT^{*}={{k_{_B} T}\over \epsilon} in the range 0.6T3.00.6 \leq T^{*} \leq 3.0. We find that, unlike the monotonic decay obtained for the liquid-vapor interfacial tension, for the liquid-liquid interface, γ(T)\gamma (T) has a maximum at a specific temperature. We also investigate the effect that surfactant-like particles has on the thermodynamic as well as the structural properties of the liquid-liquid interface. It is found that γ\gamma decays monotonically as the concentration of the surfactant-like particles increases.Comment: LaTeX-Revtex file with 7 encapsulated postscript figures. Accepted for publication in Journal of Chemical Physic

    Software tools for conducting bibliometric analysis in science: An up-to-date review

    Get PDF
    Bibliometrics has become an essential tool for assessing and analyzing the output of scientists, cooperation between universities, the effect of state-owned science funding on national research and development performance and educational efficiency, among other applications. Therefore, professionals and scientists need a range of theoretical and practical tools to measure experimental data. This review aims to provide an up-to-date review of the various tools available for conducting bibliometric and scientometric analyses, including the sources of data acquisition, performance analysis and visualization tools. The included tools were divided into three categories: general bibliometric and performance analysis, science mapping analysis, and libraries; a description of all of them is provided. A comparative analysis of the database sources support, pre-processing capabilities, analysis and visualization options were also provided in order to facilitate its understanding. Although there are numerous bibliometric databases to obtain data for bibliometric and scientometric analysis, they have been developed for a different purpose. The number of exportable records is between 500 and 50,000 and the coverage of the different science fields is unequal in each database. Concerning the analyzed tools, Bibliometrix contains the more extensive set of techniques and suitable for practitioners through Biblioshiny. VOSviewer has a fantastic visualization and is capable of loading and exporting information from many sources. SciMAT is the tool with a powerful pre-processing and export capability. In views of the variability of features, the users need to decide the desired analysis output and chose the option that better fits into their aims

    Método análisis envolvente de datos y redes neuronales en la evaluación y predicción de la eficiencia técnica de pequeñas empresas exportadoras

    Get PDF
    In this research, a method was developed to evaluate and predict the efficiency of small exporting companies taking as input or asset variables the total assets, equity, total liabilities, operating expenses, sales costs and as output or result variables. net sales, net income and operating income. For this, the envelopment data analysis was used in the evaluation of the efficiency, the discriminant analysis in the evaluation of the classification of efficient and inefficient companies and the artificial neural networks to evaluate its capacity of classification prediction in 90 companies of the sector of the city of Barranquilla-Colombia. The results allowed to classify the companies according to level of efficiency showing an average technical efficiency of 41.38% of the sector with 11 representative companies of efficiency. The results show the relevance of the proposed methodology to correctly classify and forecast technical efficiency in small exporting companies. © Centro de Informacion Tecnologica. All rights reserved

    Metodología de Aprendizaje Automático para la Clasificación y Predicción de Usuarios en Ambientes Virtuales de Educación

    Get PDF
    A methodology to classify and predict users in virtual education environments, studying the interaction of students with the platform and their performance in exams is proposed. For this, the machine learning tools, main components, clustering, fuzzy and the algorithm of the K nearest neighbor were used. The methodology first relates the users according to the study variables, to then implement a cluster analysis that identifies the formation of groups. Finally uses a machine learning algorithm to classify the users according to their level of knowledge. The results show how the time a student stays in the platform is not related to belonging to the high knowledge group. Three categories of users were identified, applying the Fuzzy K-means methodology to determine transition zones between levels of knowledge. The k nearest neighbor algorithm presents the best prediction results with 91%. © 2019 Centro de Informacion Tecnologica. All Rights Reserved

    HIPS: A new hippocampus subfield segmentation method

    Full text link
    [EN] The importance of the hippocampus in the study of several neurodegenerative diseases such as Alzheimer's disease makes it a structure of great interest in neuroimaging. However, few segmentation methods have been proposed to measure its subfields due to its complex structure and the lack of high resolution magnetic resonance (MR) data. In this work, we present a new pipeline for automatic hippocampus subfield segmentation using two available hippocampus subfield delineation protocols that can work with both high and standard resolution data. The proposed method is based on multi-atlas label fusion technology that benefits from a novel multi-contrast patch match search process (using high resolution T1-weighted and T2-weighted images). The proposed method also includes as post-processing a new neural network-based error correction step to minimize systematic segmentation errors. The method has been evaluated on both high and standard resolution images and compared to other state-of-the-art methods showing better results in terms of accuracy and execution time.This research was supported by Spanish UPV2016-0099 and TIN2013-43457-R grants from UPV and the Ministerio de Economia y Competitividad. This study has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02, HL-MRI Project), Cluster of excellence CPU and TRAIL (HR-DTI ANR-10-LABX-57) and the CNRS multidisciplinary project "Defi imag'In". We also want to thank Javier Juan Albarracin for his valuable contribution to the development of this method.Romero Gómez, JE.; Coupe, P.; Manjón Herrera, JV. (2017). HIPS: A new hippocampus subfield segmentation method. NeuroImage. 163:286-295. https://doi.org/10.1016/j.neuroimage.2017.09.049S28629516

    Design Thinking (DT) in Engineering Education (EE): A Systematic Literature Review (SLR)

    Get PDF
    Trabajo presentado en el “13th International Conference on Industrial Engineering and Industrial Management/XXIII Congreso en Ingeniería de Organización (CIO 2019)”, Gijon (Asturias, Spain) , 11 y 12 de julio de 2019[EN] Design Thinking not only is a well-known technique for user-oriented product design, but also is an education technique in Higher Education. Design thinking is increasingly used as an innovative educational tool to promote in engineering student transversal skills as critical thinking, creativity, and teamwork. However, despite its popularity, the teaching community has implemented it in many different ways focusing on specific aspects without taking in notice of previous experiences. The aim of this work is to analyze the literature published about Design Thinking experience in Engineering Education through a systematic literature review. Our conclusions will contribute to this educational area pointing the state of the art and the future lines of this educational methodolog

    Methodology of classification, forecast and prediction of healthcare providers accredited in high quality in Colombia

    Get PDF
    This research presents a methodology for classification, forecasting and prediction of healthcare providers accredited in Colombia. For this purpose, a quantitative, descriptive and predictive analysis was carried out of 27 institutions accredited in Colombia by 2016. Consequently, the machine learning techniques cluster analysis and artificial neural networks were used to define business profiles of the institutions under study. The method classifying, forecasting and predicting the membership of a healthcare provider to a business profile, previously created based on the high-quality patterns of accreditation. The input variables were assets, account receivable, inventory, property and equipment and the output variables health service sales and net profit. The cluster analysis defined two main groups. 1) accredited institutions in the process of financial consolidation; 2) accredited institutions financially sound. The process of forecasting and prediction through the creation of an artificial neural network yielded a 95% CI (088, 0.9975) precision in the classification, and 100% and 80% for sensitivity and specificity values respectively. The results evidence the capacity of the proposed methodology to recognise the characteristics and association patterns of HCP accredited in high quality

    Metodología de Análisis Envolvente de Datos (DEA) - GLMNET para la Evaluación y Pronóstico de Eficiencia Financiera en una Zona Franca Industrial - Colombia.

    Get PDF
    This research work proposes a methodology for evaluation and forecasting for companies located in the Industrial Port Zone of the city of Barranquilla, Colombia. Based on an empirical and rational analysis, supported by the concepts of technical efficiency, purely technical efficiency, additive efficiency, efficiency of scale and of mixing, as well as in the algorithm for machine learning GLMNET. Work was done with 29 companies that presented their complete financial statements for the year 2017 in the Chamber of Commerce of Barranquilla - Colombia. As a result, it was found an average technical efficiency of 72.79%, a purely technical efficiency of 82.54% and an additive efficiency of 59.45%. In addition, the projections required to make inefficient organizations achieve efficiency are contributed. From the study, it can also be observed that 11 companies were constituted as benchmarks to measure the companies of the Free Zone of the Port of Barranquilla. It is noteworthy that the algorithm GLMNET delivered a good result in the prediction of group membership of efficient and inefficient enterprises, with an accuracy of 93.1%. © 2019 Centro de Informacion Tecnologica. All rights reserved.Department of Environmental Affairs, DEATeniendo en cuenta que las exportaciones generan un incremento de la productividad como lo señalan diferentes autores (Pardo y García, 1999), esta variable se estudia en esta investigación toda vez que se aportan las directrices para que las empresas ineficientes de la zona franca en estudio alcancen la eficiencia empresarial. En términos financieros con esta investigación se analiza las magnitudes en términos de ingresos y utilidad neta de tal forma que las empresas ineficientes incrementen su eficiencia frente a los recursos que utilizan. Lo anterior permite generar una serie de decisiones en el contexto analizado que permite dinamizar y direccionar las acciones para alcanzar los resultados que permita a las organizaciones ineficientes ser competitivas en el sector. Existen investigaciones previas sobre el uso del análisis DEA y el aprendizaje automático, en (Hong et al., 1999) clasifican empresas eficientes y no eficientes utilizando DEA para luego predecir el estado de eficiencia de nuevas empresas, por otro lado (Lin, Hu, y Tsai, 2012) revisan en un periodo de cinco años la implementación del aprendizaje automático y los modelos DEA para la modelación del riesgo de quiebra en las empresas, a su vez otras investigaciones realizan procesos de clasificación paralelas utilizando la técnica de Support Vector Machines (Yeh, Chi, y Hsu, 2010), además de valoraciones empresariales en sectores específicos, como cadenas de suministro ( Wong y Wong, 2007) y desempeño corporativo (Mirhedayatian, Azadi y Saen, 2014)

    Herramienta interactiva en la comprensión del límite de una función

    Get PDF
    El propósito del trabajo es dar a conocer las bondades que tiene el uso de las tecnologías a través de la interactividad. Para ello, se realizó un estudio correlacional con un diseño cuasi-experimental con pre test y post test. Además se tuvo una población de 45 estudiantes que cursaban la asignatura de matemáticas II distribuidos en dos grupos. Se utilizó la prueba t de Student para verificar si existía diferencia entre el grupo experimental y de control sobre el grado de comprensión del límite de forma gráfica. De acuerdo a los resultados obtenidos se pudo constatar que existe diferencia estadística significativa entre los grupos (experimental y control), lo cual indica que la herramienta interactiva ayuda a la compresión del límite de una función. Por otra parte, fue considerada por los estudiantes como atractiva y educativa, esto pone en manifiesto que el uso de las tecnologías en la educación matemática puede potenciar la comprensión de los conceptos y algoritmos matemáticos de forma interactiva

    Lifespan Changes of the Human Brain In Alzheimer's Disease

    Get PDF
    [EN] Brain imaging studies have shown that slow and progressive cerebral atrophy characterized the development of Alzheimer's Disease (AD). Despite a large number of studies dedicated to AD, key questions about the lifespan evolution of AD biomarkers remain open. When does the AD model diverge from the normal aging model? What is the lifespan trajectory of imaging biomarkers for AD? How do the trajectories of biomarkers in AD differ from normal aging? To answer these questions, we proposed an innovative way by inferring brain structure model across the entire lifespan using a massive number of MRI (N = 4329). We compared the normal model based on 2944 control subjects with the pathological model based on 3262 patients (AD + Mild cognitive Impaired subjects) older than 55 years and controls younger than 55 years. Our study provides evidences of early divergence of the AD models from the normal aging trajectory before 40 years for the hippocampus, followed by the lateral ventricles and the amygdala around 40 years. Moreover, our lifespan model reveals the evolution of these biomarkers and suggests close abnormality evolution for the hippocampus and the amygdala, whereas trajectory of ventricular enlargement appears to follow an inverted U-shape. Finally, our models indicate that medial temporal lobe atrophy and ventricular enlargement are two mid-life physiopathological events characterizing AD brain.This work benefited from the support of the project DeepVolBrain of the French National Research Agency (ANR-18-CE45-0013). This study was achieved within the context of the Laboratory of Excellence TRAIL ANR-10-LABX-57 for the BigDataBrain project. Moreover, we thank the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX- 03-02, HL-MRI Project), Cluster of excellence CPU and the CNRS. This study has been also supported by the DPI2017-87743-R grant from the Spanish Ministerio de Economia, Industria y Competitividad. Moreover, this work is based on multiple samples. We wish to thank all investigators of these projects who collected these datasets and made them freely accessible. The C-MIND data used in the preparation of this article were obtained from the C-MIND Data Repository (accessed in Feb 2015) created by the C-MIND study of Normal Brain Development. This is a multisite, longitudinal study of typically developing children from ages newborn through young adulthood conducted by Cincinnati Children's Hospital Medical Center and UCLA and supported by the National Institute of Child Health and Human Development (Contract #s HHSN275200900018C). A listing of the participating sites and a complete listing of the study investigators can be found at https://research.cchmc.org/c-mind. The NDAR data used in the preparation of this manuscript were obtained from the NIH-supported National Database for Autism Research (NDAR). NDAR is a collaborative informatics system created by the National Institutes of Health to provide a national resource to support and accelerate research in autism. The NDAR dataset includes data from the NIH Pediatric MRI Data Repository created by the NIH MRI Study of Normal Brain Development. This is a multisite, longitudinal study of typically developing children from ages newborn through young adulthood conducted by the Brain Development Cooperative Group and supported by the National Institute of Child Health and Human Development, the National Institute on Drug Abuse, the National Institute of Mental Health, and the National Institute of Neurological Disorders and Stroke (Contract #s N01- HD02-3343, N01-MH9-0002, and N01-NS-9-2314, -2315, -2316, -2317, -2319 and -2320). A listing of the participating sites and a complete listing of the study investigators can be found at http://pediatricmri.nih.gov/nihpd/info/participating_centers.html. The ADNI data used in the preparation of this manuscript were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). The ADNI is funded by the National Institute on Aging and the National Institute of Biomedical Imaging and Bioengineering and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics NV, Johnson & Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc., F. Hoffmann-La Roche, Schering-Plough, Synarc Inc., as well as nonprofit partners, the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration. Private sector contributions to the ADNI are facilitated by the Foundation for the National Institutes of Health (www.fnih.org).Coupé, P.; Manjón Herrera, JV.; Lanuza, E.; Catheline, G. (2019). Lifespan Changes of the Human Brain In Alzheimer's Disease. Scientific Reports. 9:1-12. https://doi.org/10.1038/s41598-019-39809-8S1129Lobo, A. et al. Prevalence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurology 54, S4 (2000).Barnes, J. et al. Alzheimer’s disease first symptoms are age dependent: evidence from the NACC dataset. Alzheimer’s & dementia 11, 1349–1357 (2015).Jack, C. R. et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurology 12, 207–216 (2013).Nestor, P. J., Scheltens, P. & Hodges, J. R. Advances in the early detection of Alzheimer’s disease. Nature medicine 10 (2004).Davatzikos, C., Fan, Y., Wu, X., Shen, D. & Resnick, S. M. Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiology of aging 29, 514–523 (2008).Bakkour, A., Morris, J. C. & Dickerson, B. C. The cortical signature of prodromal AD Regional thinning predicts mild AD dementia. Neurology 72, 1048–1055 (2009).Chan, D. et al. Change in rates of cerebral atrophy over time in early-onset Alzheimer’s disease: longitudinal MRI study. The Lancet 362, 1121–1122 (2003).Ridha, B. H. et al. Tracking atrophy progression in familial Alzheimer’s disease: a serial MRI study. The Lancet Neurology 5, 828–834 (2006).Sala-Llonch, R., Bartrés-Faz, D. & Junqué, C. Reorganization of brain networks in aging: a review of functional connectivity studies. Frontiers in psychology 6 (2015).Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. New England Journal of Medicine 367, 795–804 (2012).Dickerson, B. et al. Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 76, 1395–1402 (2011).Miller, M. I. et al. The diffeomorphometry of temporal lobe structures in preclinical Alzheimer’s disease. NeuroImage: Clinical 3, 352–360 (2013).Bernard, C. et al. Time course of brain volume changes in the preclinical phase of Alzheimer’s disease. Alzheimer’s & Dementia 10, 143–151. e141 (2014).den Heijer, T. et al. A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline. Brain 133, 1163–1172 (2010).Coupé, P. et al. Detection of Alzheimer’s disease signature in MR images seven years before conversion to dementia: Toward an early individual prognosis. Hum Brain Mapp 36, 4758–4770, https://doi.org/10.1002/hbm.22926 (2015).Albert, M. et al. Predicting progression from normal cognition to mild cognitive impairment for individuals at 5 years. Brain (2018).Poldrack, R. A. & Gorgolewski, K. J. Making big data open: data sharing in neuroimaging. Nature neuroscience 17, 1510–1517 (2014).Solomon, A. et al. Serum cholesterol changes after midlife and late-life cognition twenty-one-year follow-up study. Neurology 68, 751–756 (2007).Debette, S. et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology 77, 461–468 (2011).Tolppanen, A.-M. et al. Midlife and late-life body mass index and late-life dementia: results from a prospective population-based cohort. Journal of Alzheimer’s Disease 38, 201–209 (2014).Coupe, P., Catheline, G., Lanuza, E. & Manjon, J. V. & Alzheimer’s Disease Neuroimaging, I. Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis. Hum Brain Mapp 38, 5501–5518, https://doi.org/10.1002/hbm.23743 (2017).Villemagne, V. L. et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. The Lancet Neurology 12, 357–367 %@1474–4422 (2013).Villemagne, V. L. et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Annals of neurology 69, 181–192 (2011).Poulin, S. P. et al. Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity. Psychiatry Research: Neuroimaging 194, 7–13 (2011).Jack, C. R. et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49, 786–794 (1997).Apostolova, L. G. et al. Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment and Alzheimer’s disease. Alzheimer disease and associated disorders 26, 17 (2012).Nestor, S. M. et al. Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain 131, 2443–2454 (2008).Petersen, R. C. et al. Alzheimer’s disease Neuroimaging Initiative (ADNI) clinical characterization. Neurology 74, 201–209 (2010).Marcus, D. S. et al. Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of cognitive neuroscience 19, 1498–1507 (2007).Manjon, J. V. & Coupe, P. volBrain: An Online MRI Brain Volumetry System. Front Neuroinform 10, 30, https://doi.org/10.3389/fninf.2016.00030 (2016).Manjon, J. V., Coupe, P., Marti-Bonmati, L., Collins, D. L. & Robles, M. Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging 31, 192–203, https://doi.org/10.1002/jmri.22003 (2010).Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29, 1310–1320, https://doi.org/10.1109/TMI.2010.2046908 (2010).Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011).Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26, 839–851, https://doi.org/10.1016/j.neuroimage.2005.02.018 (2005).Manjón, J. V., Tohka, J. & Robles, M. Improved estimates of partial volume coefficients from noisy brain MRI using spatial context. Neuroimage 53, 480–490 (2010).Manjon, J. V. et al. Nonlocal intracranial cavity extraction. Int J Biomed Imaging 2014, 820205, https://doi.org/10.1155/2014/820205 (2014).Coupe, P. et al. Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. Neuroimage 54, 940–954, https://doi.org/10.1016/j.neuroimage.2010.09.018 (2011).Frisoni, G. B. et al. The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: evidence of validity. Alzheimer’s & Dementia 11, 111–125 (2015).Solow, R. M. A contribution to the theory of economic growth. The quarterly journal of economics 70, 65–94 %@1531–4650 (1956).Coupe, P. et al. Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease. Neuroimage Clin 1, 141–152, https://doi.org/10.1016/j.nicl.2012.10.002 (2012).Cuingnet, R. et al. Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56, 766–781, https://doi.org/10.1016/j.neuroimage.2010.06.013 (2011).Eskildsen, S. F. et al. Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. Neuroimage 65, 511–521 (2013).Eskildsen, S. F. et al. Structural imaging biomarkers of Alzheimer’s disease: predicting disease progression. Neurobiology of aging 36, S23–S31 (2015).Tong, T. et al. A Novel Grading Biomarker for the Prediction of Conversion From Mild Cognitive Impairment to Alzheimer’s Disease. IEEE Transactions on Biomedical Engineering 64, 155–165 (2017).Wolz, R. et al. Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PLoS One 6, e25446, https://doi.org/10.1371/journal.pone.0025446 (2011).Bron, E. E. et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. Neuroimage 111, 562–579, https://doi.org/10.1016/j.neuroimage.2015.01.048 (2015).Chaddad, A., Desrosiers, C., Hassan, L. & Tanougast, C. Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder. BMC Neurosci 18, 52, https://doi.org/10.1186/s12868-017-0373-0 (2017).Chaddad, A., Desrosiers, C. & Toews, M. Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age. Sci Rep 7, 45639, https://doi.org/10.1038/srep45639 (2017).Apostolova, L. G. et al. Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal. Neurobiology of aging 31, 1077–1088 (2010).Younes, L., Albert, M., Miller, M. I. & Team, B. R. Inferring changepoint times of medial temporal lobe morphometric change in preclinical Alzheimer’s disease. NeuroImage: Clinical 5, 178–187 (2014).Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica 82, 239–259 (1991).Badea, A. et al. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer’s disease. NeuroImage 142, 498–511 (2016).Micotti, E. et al. Striatum and entorhinal cortex atrophy in AD mouse models: MRI comprehensive analysis. Neurobiology of aging 36, 776–788 (2015).Whitwell, J. L. et al. MRI correlates of neurofibrillary tangle pathology at autopsy A voxel-based morphometry study. Neurology 71, 743–749 (2008).Iaccarino, L. et al. Local and distant relationships between amyloid, tau and neurodegeneration in Alzheimer’s Disease. NeuroImage: Clinical 17, 452–464 (2018).Das, S. R. et al. Longitudinal and cross-sectional structural magnetic resonance imaging correlates of AV-1451 uptake. Neurobiology of aging 66, 49–58 (2018).Knopman, D. S. et al. Joint associations of β-amyloidosis and cortical thickness with cognition. Neurobiology of aging 65, 121–131 (2018).Doré, V. et al. Cross-sectional and longitudinal analysis of the relationship between Aβ deposition, cortical thickness, and memory in cognitively unimpaired individuals and in Alzheimer disease. JAMA neurology 70, 903–911 (2013).Jack, C. R. et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87, 539–547 (2016).Cavedo, E. et al. Local amygdala structural differences with 3T MRI in patients with Alzheimer disease. Neurology 76, 727–733 (2011).Qiu, A., Fennema-Notestine, C., Dale, A. M., Miller, M. I. & Alzheimer’s Disease Neuroimaging, I. Regional shape abnormalities in mild cognitive impairment and Alzheimer’s disease. Neuroimage 45, 656–661 (2009).Lin, T.-W. et al. Neurodegeneration in amygdala precedes hippocampus in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Current Alzheimer Research 12, 951–963 (2015).Phelps, E. A. Human emotion and memory: interactions of the amygdala and hippocampal complex. Current opinion in neurobiology 14, 198–202 (2004).Kumfor, F. et al. Degradation of emotion processing ability in corticobasal syndrome and Alzheimer’s disease. Brain 137, 3061–3072 (2014).De Olmos, J. S. In The Human Nervous System (Second Edition) Ch. 22, 739–868 (2004).Tabert, M. H. et al. A 10‐item smell identification scale related to risk for Alzheimer’s disease. Annals of neurology 58, 155–160 (2005).Serby, M., Larson, P. & Kalkstein, D. The nature and course of olfactory deficits in Alzheimer’s disease. The American journal of psychiatry 148, 357 (1991).Djordjevic, J., Jones-Gotman, M., De Sousa, K. & Chertkow, H. Olfaction in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiology of aging 29, 693–706 (2008).Price, J. L., Davis, P., Morris, J. & White, D. The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiology of aging 12, 295–312 (1991).Ohm, T. & Braak, H. Olfactory bulb changes in Alzheimer’s disease. Acta neuropathologica 73, 365–369 (1987).Carmichael, O. T. et al. Cerebral ventricular changes associated with transitions between normal cognitive function, mild cognitive impairment, and dementia. Alzheimer disease and associated disorders 21, 14 (2007).Prince, M., Bryce, R. & Ferri, C. World Alzheimer Report 2011: The benefits of early diagnosis and intervention. (Alzheimer’s Disease International, 2011).De Jong, L. W. et al. Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain 131, 3277–3285 (2008).Braak, H. & Braak, E. Alzheimer’s disease affects limbic nuclei of the thalamus. Acta neuropathologica 81, 261–268 (1991).Fjell, A. M. et al. Critical ages in the life course of the adult brain: nonlinear subcortical aging. Neurobiol Aging 34, 2239–2247, https://doi.org/10.1016/j.neurobiolaging.2013.04.006 (2013).Fotenos, A. F., Snyder, A. Z., Girton, L. E., Morris, J. C. & Buckner, R. L. Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64, 1032–1039 (2005).Fjell, A. M. et al. One-year brain atrophy evident in healthy aging. Journal of Neuroscience 29, 15223–15231 (2009).Jack, C. R. et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62, 591–600 (2004).Barnes, J. et al. A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiology of aging 30, 1711–1723 (2009).McDonald, C. R. et al. Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 73, 457–465 (2009).Sankar, T. et al. Your algorithm might think the hippocampus grows in Alzheimer’s disease: Caveats of longitudinal automated hippocampal volumetry. Human Brain Mapping 38, 2875–2896 (2017).Small, B. J., Fratiglioni, L., Viitanen, M., Winblad, B. & Bäckman, L. The course of cognitive impairment in preclinical Alzheimer disease: three-and 6-year follow-up of a population-based sample. Archives of neurology 57, 839–844 (2000).La Rue, A. & Jarvik, L. F. Cognitive function and prediction of dementia in old age. The International Journal of Aging and Human Development 25, 79–89 (1987).Elias, M. F. et al. The preclinical phase of Alzheimer disease: a 22-year prospective study of the Framingham Cohort. Archives of neurology 57, 808–813 (2000).Snowdon, D. A. et al. Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life: Findings from the Nun Study. Jama 275, 528–532 (1996).Dubois, B. et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimer’s & Dementia 12, 292–323 (2016).Krell-Roesch, J. et al. Leisure-Time Physical Activity and the Risk of IncidentDementia: The Mayo Clinic Study of Aging. Journal of Alzheimer’s Disease, 1–7 (2018).Rusanen, M., Kivipelto, M., Quesenberry, C. P., Zhou, J. & Whitmer, R. A. Heavy smoking in midlife and long-term risk of Alzheimer disease and vascular dementia. Archives of internal medicine 171, 333–339 (2011)
    corecore