48 research outputs found

    Baseline Chest Computed Tomography as Standard of Care in High-Risk Hematology Patients

    Get PDF
    Baseline chest computed tomography (BCT) in high-risk hematology patients allows for the early diagnosis of invasive pulmonary aspergillosis (IPA). The distribution of BCT implementation in hematology departments and impact on outcome is unknown. A web-based questionnaire was designed. International scientific bodies were invited. The estimated numbers of annually treated hematology patients, chest imaging timepoints and techniques, IPA rates, and follow-up imaging were assessed. In total, 142 physicians from 43 countries participated. The specialties included infectious diseases (n = 69; 49%), hematology (n = 68; 48%), and others (n = 41; 29%). BCT was performed in 57% (n = 54) of 92 hospitals. Upon the diagnosis of malignancy or admission, 48% and 24% performed BCT, respectively, and X-ray was performed in 48% and 69%, respectively. BCT was more often used in hematopoietic cell transplantation and in relapsed acute leukemia. European centers performed BCT in 59% and non-European centers in 53%. Median estimated IPA rate was 8% and did not differ between BCT (9%; IQR 5-15%) and non-BCT centers (7%; IQR 5-10%) (p = 0.69). Follow-up computed tomography (CT) for IPA was performed in 98% (n = 90) of centers. In high-risk hematology patients, baseline CT is becoming a standard-of-care. Chest X-ray, while inferior, is still widely used. Randomized, controlled trials are needed to investigate the impact of BCT on patient outcome

    Mathematical models for cytarabine-derived myelosuppression in acute myeloid leukaemia.

    No full text
    We investigate the personalisation and prediction accuracy of mathematical models for white blood cell (WBC) count dynamics during consolidation treatment using intermediate or high-dose cytarabine (Ara-C) in acute myeloid leukaemia (AML). Ara-C is the clinically most relevant cytotoxic agent for AML treatment. We extend a mathematical model of myelosuppression and a pharmacokinetic model of Ara-C with different hypotheses of Ara-C's pharmacodynamic effects. We cross-validate the 12 model variations using dense WBC count measurements from 23 AML patients. Surprisingly, the prediction accuracy remains satisfactory in each of the models despite different modelling hypotheses. Therefore, we compare average clinical and calculated WBC recovery times for different Ara-C schedules as a successful methodology for model discrimination. As a result, a new hypothesis of a secondary pharmacodynamic effect on the proliferation rate seems plausible. Furthermore, we demonstrate the impact of treatment timing on subsequent nadir values based on personalised predictions as a possibility for influencing/controlling myelosuppression

    Mathematical Modeling of RBC Count Dynamics after Blood Loss

    No full text
    The regeneration of red blood cells (RBCs) after blood loss is an individual complex process. We present a novel simple compartment model which is able to capture the most important features and can be personalized using parameter estimation. We compare predictions of the proposed and personalized model to a more sophisticated state-of-the-art model for erythropoiesis, and to clinical data from healthy subjects. We discuss the choice of model parameters with respect to identifiability. We give an outlook on how extensions of this novel mathematical model could have an important impact for personalized clinical decision support in the case of polycythemia vera (PV). PV is a slow-growing type of blood cancer, where especially the production of RBCs is increased. The principal treatment targeting the symptoms of PV is bloodletting (phlebotomy), at regular intervals that are based on personal experiences of the physicians. Model-based decision support might help to identify optimal and individualized phlebotomy schedules
    corecore