53 research outputs found

    ChronoMID-Cross-modal neural networks for 3-D temporal medical imaging data.

    Get PDF
    ChronoMID-neural networks for temporally-varying, hence Chrono, Medical Imaging Data-makes the novel application of cross-modal convolutional neural networks (X-CNNs) to the medical domain. In this paper, we present multiple approaches for incorporating temporal information into X-CNNs and compare their performance in a case study on the classification of abnormal bone remodelling in mice. Previous work developing medical models has predominantly focused on either spatial or temporal aspects, but rarely both. Our models seek to unify these complementary sources of information and derive insights in a bottom-up, data-driven approach. As with many medical datasets, the case study herein exhibits deep rather than wide data; we apply various techniques, including extensive regularisation, to account for this. After training on a balanced set of approximately 70000 images, two of the models-those using difference maps from known reference points-outperformed a state-of-the-art convolutional neural network baseline by over 30pp (> 99% vs. 68.26%) on an unseen, balanced validation set comprising around 20000 images. These models are expected to perform well with sparse data sets based on both previous findings with X-CNNs and the representations of time used, which permit arbitrarily large and irregular gaps between data points. Our results highlight the importance of identifying a suitable description of time for a problem domain, as unsuitable descriptors may not only fail to improve a model, they may in fact confound it

    Patient-Specific Finite Element Models of Posterior Pedicle Screw Fixation: Effect of Screw's Size and Geometry

    Get PDF
    Pedicle screw fixation is extensively performed to treat spine injuries or diseases and it is common for thoracolumbar fractures. Post-operative complications may arise from this surgery leading to back pain or revisions. Finite element (FE) models could be used to predict the outcomes of surgeries but should be verified when both simplified and realistic designs of screws are used. The aim of this study was to generate patient-specific Computed Tomography (CT)-based FE models of human vertebrae with two pedicle screws, verify the models, and use them to evaluate the effect of the screws’ size and geometry on the mechanical properties of the screws-vertebra structure. FE models of the lumbar vertebra implanted with two pedicle screws were created from anonymized CT-scans of three patients. Compressive loads were applied to the head of the screws. The mesh size was optimized for realistic and simplified geometry of the screws with a mesh refinement study. Finally, the optimal mesh size was used to evaluate the sensitivity of the model to changes in screw’s size (diameter and length) and geometry (realistic or simplified). For both simplified and realistic models, element sizes of 0.6 mm in the screw and 1.0 mm in the bone allowed to obtain relative differences of approximately 5% or lower. Changes in screw’s length resulted in 4–10% differences in maximum deflection, 1–6% differences in peak stress in the screws, 10–22% differences in mean strain in the bone around the screw; changes in screw’s diameter resulted in 28–36% differences in maximum deflection, 6–27% differences in peak stress in the screws, and 30–47% differences in mean strain in the bone around the screw. The maximum deflection predicted with realistic or simplified screws correlated very well (R2 = 0.99). The peak stress in screws with realistic or simplified design correlated well (R2 = 0.82) but simplified models underestimated the peak stress. In conclusion, the results showed that the diameter of the screw has a major role on the mechanics of the screw-vertebral structure for each patient. Simplified screws can be used to estimate the mechanical properties of the implanted vertebrae, but the systematic underestimation of the peak stress should be considered when interpreting the results from the FE analyses

    Assessment of a novel biomechanical fracture model for distal radius fractures

    Get PDF
    Background: Distal radius fractures (DRF) are one of the most common fractures and often need surgical treatment, which has been validated through biomechanical tests. Currently a number of different fracture models are used, none of which resemble the in vivo fracture location. The aim of the study was to develop a new standardized fracture model for DRF (AO-23.A3) and compare its biomechanical behavior to the current gold standard. Methods: Variable angle locking volar plates (ADAPTIVE, Medartis) were mounted on 10 pairs of fresh-frozen radii. The osteotomy location was alternated within each pair (New: 10 mm wedge 8 mm / 12 mm proximal to the dorsal / volar apex of the articular surface; Gold standard: 10 mm wedge 20 mm proximal to the articular surface). Each specimen was tested in cyclic axial compression (increasing load by 100 N per cycle) until failure or -3 mm displacement. Parameters assessed were stiffness, displacement and dissipated work calculated for each cycle and ultimate load. Significance was tested using a linear mixed model and Wald test as well as t-tests. Results: 7 female and 3 male pairs of radii aged 74 +/- 9 years were tested. In most cases (7/10), the two groups showed similar mechanical behavior at low loads with increasing differences at increasing loads. Overall the novel fracture model showed a significant different biomechanical behavior than the gold standard model (p < 0,001). The average final loads resisted were significantly lower in the novel model (860 N +/- 232 N vs. 1250 N +/- 341 N; p = 0.001). Conclusion: The novel biomechanical fracture model for DRF more closely mimics the in vivo fracture site and shows a significantly different biomechanical behavior with increasing loads when compared to the current gold standard

    9A.07: CARDIOVASCULAR TARGET ORGAN DAMAGE IN PREMENOPAUSAL SYSTEMIC LUPUS ERYTHEMATOSUS PATIENTS AND IN CONTROLS. ARE THERE ANY DIFFERENCES?

    Get PDF
    OBJECTIVE: In patients with systemic lupus erythematosus (SLE) a greater prevalence of structural and functional cardiovascular (CV) alterations has been described, possibly explaining the higher incidence of CV events, as compared to subjects matched for age and sex.Aim of this study was to analyze the presence of target organ damage in premenopausal women with SLE and in controls matched not only for demographic characteristics but also for other cardiovascular risk factors. DESIGN AND METHOD: 34 patients with SLE clinically stable (SLEDAI Score 2.5 +/- 1.5) (mean age 32 ± 7 years, range 19-44) and 34 controls matched for sex, age, body mass index (BMI), clinic blood pressure (BP) and antihypertensive treatment (if present), underwent: 24 hours BP monitoring, echocardiography with tissue Doppler analysis (TDI) for the evaluation of left ventricular (LV) structure and of systolic and diastolic function, carotid ultrasound for intima-media thickness (IMT) and carotid distensibility measurement, and pulse wave velocity measurement for aortic stiffness (PWV). RESULTS: By definition no difference was observed for age, sex, BMI and clinic BP values and a similar Framingham risk score was observed between SLE and controls (1.3 ± 2.7 vs 1.5 ± 2.3%, p = ns). No significant differences were observed for all echocardiographic parameters except LV longitudinal systolic function (Sm), an early index of LV systolic dysfunction (see Table). Carotid IMT and distensibility, as well as PWV and the prevalence of an abnormal aortic stiffness were both similar in the two groups. At the logistic analysis, PWV was independently associated with LV mass in controls and with the steroid weekly dose in SLE patients.(Figure is included in full-text article.) CONCLUSIONS: In patients with SLE and low activity index of the disease we did not observe significant vascular alterations as compared to controls with similar cardiovascular risk. The early LV systolic impairment observed in this group of patients needs confirmation in larger cohorts

    Risk factors for pulmonary air leak and clinical prognosis in patients with COVID-19 related acute respiratory failure: a retrospective matched control study.

    Get PDF
    Background- The role of excessive inspiratory effort in promoting alveolar and pleural rupture resulting in air leak (AL) in patients with SARS-CoV-2 induced acute respiratory failure (ARF) while on spontaneous breathing is undetermined. Methods- Among all patients with COVID-19 related ARF admitted to a respiratory intensive care unit (RICU) and receiving non-invasive respiratory support, those developing an AL were and matched 1:1 (by means of PaO2/FiO2 ratio, age, body mass index-BMI and subsequent organ failure assessment [SOFA]) with a comparable population who did not (NAL group). Esophageal pressure (ΔPes) and dynamic transpulmonary pressure (ΔPL) swings were compared between groups. Risk factors affecting AL onset were evaluated. The composite outcome of ventilator-free-days (VFD) at day 28 (including ETI, mortality, tracheostomy) was compared between groups. Results- AL and NAL groups (n=28) showed similar ΔPes, whereas AL had higher ΔPL (20 [16‐21] and 17 [11‐20], p=0.01 respectively). Higher ΔPL (OR=1.5 95%CI[1‐1.8], p=0.01), positive end‐expiratory pressure (OR=2.4 95%CI[1.2‐5.9], p=0.04) and pressure support (OR=1.8 95%CI[1.1-3.5], p=0.03), D-dimer on admission (OR=2.1 95%CI[1.3-9.8], p=0.03), and features suggestive of consolidation on computed tomography scan (OR=3.8 95%CI[1.1-15], p= 0.04) were all significantly associated with AL. A lower VFD score resulted in a higher risk (HR=3.7 95%CI [1.2-11.3], p=0.01) in the AL group compared with NAL. RICU stay and 90-day mortality were also higher in the AL group compared with NAL. Conclusions- In spontaneously breathing patients with COVID‐19 related ARF, higher levels of ΔPL, blood D‐dimer, NIV delivery pressures and a consolidative lung pattern were associated with AL onset

    Evaluation of in-vivo measurement errors associated with micro-computed tomography scans by means of the bone surface distance approach.

    Get PDF
    In vivo micro-computed tomography (µCT) scanning is an important tool for longitudinal monitoring of the bone adaptation process in animal models. However, the errors associated with the usage of in vivo µCT measurements for the evaluation of bone adaptations remain unclear. The aim of this study was to evaluate the measurement errors using the bone surface distance approach. The right tibiae of eight 14-week-old C57BL/6 J female mice were consecutively scanned four times in an in vivo µCT scanner using a nominal isotropic image voxel size (10.4 µm) and the tibiae were repositioned between each scan. The repeated scan image datasets were aligned to the corresponding baseline (first) scan image dataset using rigid registration and a region of interest was selected in the proximal tibia metaphysis for analysis. The bone surface distances between the repeated and the baseline scan datasets were evaluated. It was found that the average (±standard deviation) median and 95th percentile bone surface distances were 3.10 ± 0.76 µm and 9.58 ± 1.70 µm, respectively. This study indicated that there were inevitable errors associated with the in vivo µCT measurements of bone microarchitecture and these errors should be taken into account for a better interpretation of bone adaptations measured with in vivo µCT

    Strain uncertainties from two digital volume correlation approaches in prophylactically augmented vertebrae: local analysis on bone and cement-bone microstructures

    Get PDF
    Combination of micro-focus computed tomography (micro-CT) in conjunction with in situ mechanical testing and digital volume correlation (DVC) can be used to access the internal deformation of materials and structures. DVC has been exploited over the past decade to measure complex deformation fields within biological tissues and bone-biomaterial systems. However, before adopting it in a clinically-relevant context (i.e. bone augmentation in vertebroplasty), the research community should focus on understanding the reliability of such method in different orthopaedic applications involving the use of biomaterials. The aim of this study was to evaluate systematic and random errors affecting the strain computed with two different DVC approaches (a global one, “ShIRT-FE”, and a local one, “DaVis-DC”) in different microstructures within augmented vertebrae, such as trabecular bone, cortical bone and cement-bone interdigitation. The results showed that systematic error was insensitive to the size of the computation sub-volume used for the DVC correlation. Conversely, the random error (which was generally the largest component of error) was lower for a 48-voxel (1872 μm) sub-volume (64–221 microstrain for ShIRT-FE, 88–274 microstrain for DaVis-DC), than for a 16-voxel (624 μm) sub-volume (359–1203 microstrain for ShIRT-FE, 960–1771 microstrain for DaVis-DC) for the trabecular and cement regions. Overall, the local random error did not appear to be influenced by either bone microarchitecture or presence of biomaterial. For the 48-voxel sub-volume the global approach was less sensitive to the gradients in grey-values at the cortical surface (random error below 200 microstrain), while the local approach showed errors up to 770 microstrain. Mean absolute error (MAER) and standard deviation of error (SDER) were also calculated and substantially improved when compared to recent literature for the cement-bone interface. The multipass approach for DaVis-DC further reduced the random error for the largest volume of interest. The random error did not follow any recognizable pattern with the six strain components and only ShiRT-FE seemed to produce lower random errors in the normal strains. In conclusion this study has provided, for the first time, a preliminary indication of the reliability and limitations for the application of DVC in estimating the micromechanics of bone and cement-bone interface in augmented vertebrae

    Validation of calcaneus trabecular microstructure measurements by HR-pQCT

    Get PDF
    OBJECTIVE: Assessment of calcaneus microstructure using high-resolution peripheral quantitative computed tomography (HR-pQCT) might be used to improve fracture risk predictions or to assess responses to pharmacological and physical interventions. To develop a standard clinical protocol for the calcaneus, we validated calcaneus trabecular microstructure measured by HR-pQCT against 'gold-standard' micro-CT measurements. METHODS: Ten human cadaveric feet were scanned in situ using HR-pQCT (isotropic 82μm voxel size) at 100, 150 and 200ms integration times, and at 100ms integration time following removal of the calcaneus from the foot (ex vivo). Dissected portions of these bones were scanned using micro-computed tomography (micro-CT) at an isotropic 17.4μm voxel size. HR-pQCT images were rigidly registered to those obtained with micro-CT and divided into multiple 5mm sided cubes to evaluate and compare morphometric parameters between the modalities. Standard HR-pQCT measurements (derived bone volume fraction (BV/TV(d)); trabecular number, Tb.N; derived trabecular thickness, Tb.Th(d); derived trabecular spacing, Tb.Sp(d)) and corresponding micro-CT voxel-based measurements (BV/TV, Tb.N, Tb.Th, Tb.Sp) were compared. RESULTS: A total of 108 regions of interest were analysed across the 10 specimens. At all integration times HR-pQCT BV/TV(d) was strongly correlated with micro-CT BV/TV (r(2)=0.95-0.98, RMSE=1%), but BV/TV(d) was systematically lower than that measured by micro-CT (mean bias=5%). In contrast, HR-pQCT systematically overestimated Tb.N at all integration times; of the in situ scans, 200ms yielded the lowest mean bias and the strongest correlation with micro-CT (r(2)=0.61, RMSE=0.15mm(-1)). Regional analysis revealed greater accuracy for Tb.N in the superior regions of the calcaneus at all integration times in situ (mean bias=0.44-0.85mm(-1); r(2)=0.70-0.88, p<0.001 versus mean bias=0.63-1.46mm(-1); r(2)<0.10, p≥0.21 for inferior regions). Tb.Sp(d) was underestimated by HR-pQCT compared to micro-CT, but showed similar trends with integration time and the region evaluated as Tb.N. HR-pQCT Tb.Th(d) was also underestimated (mean bias=0.081-0.102mm) and moderately correlated (r(2)=0.55-0.59) with micro-CT Tb.Th, independently from the integration time. Stronger correlations, smaller biases and error were found in the scans of the calcaneus ex vivo compared to in situ. CONCLUSION: Calcaneus trabecular BV/TV(d) and trabecular microstructure, particularly in the superior region of the calcaneus, can be assessed by HR-pQCT. The highest integration time examined, 200ms, compared best with micro-CT. Weaker correlations for microstructure at inferior regions, and also with lower integration times, might limit the use of the proposed protocol, which warrants further investigation in vivo
    corecore