1,111 research outputs found
Instabilities in the dissolution of a porous matrix
A reactive fluid dissolving the surrounding rock matrix can trigger an
instability in the dissolution front, leading to spontaneous formation of
pronounced channels or wormholes. Theoretical investigations of this
instability have typically focused on a steadily propagating dissolution front
that separates regions of high and low porosity. In this paper we show that
this is not the only possible dissolutional instability in porous rocks; there
is another instability that operates instantaneously on any initial porosity
field, including an entirely uniform one. The relative importance of the two
mechanisms depends on the ratio of the porosity increase to the initial
porosity. We show that the "inlet" instability is likely to be important in
limestone formations where the initial porosity is small and there is the
possibility of a large increase in permeability. In quartz-rich sandstones,
where the proportion of easily soluble material (e.g. carbonate cements) is
small, the instability in the steady-state equations is dominant.Comment: to be published in Geophysical Research Letter
Stepping into the Same River Twice: Field Evidence for the Repeatability of a CO2 Injection Test
A single well characterisation test was conducted at the CO2CRC Otway storage site in Victoria, Australia, in 2011 and repeated in 2014. The near-well permeability was found to have declined nearly 60% since the 2011 test, while the residual saturation inferred from a variety of techniques was lower in 2014. There was a significant change in water chemistry, suggesting an alteration of near-well reservoir properties. Possible reasons for these changes are explored, and the implications for other field tests are discussed
Cyclic CO2 – H2O injection and residual trapping: implications for CO2 injection efficiency and storage security
To meet the Paris Agreement target of limiting global warming to 2 °C or below it is widely accepted that Carbon Capture and Storage (CCS) will have to be deployed at scale. For the first time, experiments have been undertaken over six cycles of water and supercritical CO2 injection using a state of the art high flow rig recreating in-situ conditions of near wellbore injection into analogue storage reservoir rocks. The results show that differential pressure continuously increases over multiple injection cycles. Our interpretation is that multiple cycles of injection result in a reduced effective permeability due to increased residual trapping acting as a barrier to flow resulting in reduced injectivity. This is supported by numerical modelling and field observations that show CO2 injectivity and its variation over time will be affected by multiple cycles of injection. These results suggest that loss of injectivity must be incorporated into the injection strategy and that careful management of cyclic injection will create the opportunity to increase residual trapping
Determining residual CO(2) saturation through a dissolution test - Results from the CO2CRC Otway Project
Residual CO2 trapping (Sgr-CO2) is a key mechanism for geological CO2 storage. The CO2CRC undertook a sequence of field tests with the aim of comparing different ways of determining Sgr-CO2 including a dissolution test. Dissolution test results show an unexpectedly early breakthrough and low maximum CO2 concentrations in the back- produced water making the data inconclusive when using traditional data interpretation. Here, we consider two conditions to explain the observations: Firstly, residual CO2 is vertically unevenly distributed and, secondly, the fluid and residual CO2 are not in equilibrium. Furthermore, we postulate localised flow channels have formed during the 3- month test period caused by advective flow of CO2-saturated, low pH water leading to transport-controlled mineral dissolution.R.R. Haese, T. LaForce, C. Boreham, J. Ennis-King, B.M. Freifeld, L. Paterson, U. Schach
Measurements of Non-Wetting Phase Trapping Applied to Carbon Dioxide Storage
We measure the trapped non-wetting phase saturation as a function of the initial saturation in sand packs. The application of the work is for carbon dioxide (CO2) storage in aquifers where capillary trapping is a rapid and effective mechanism to render injected CO2 immobile. We used analogue fluids at ambient conditions. The trapped saturation initially rises linearly with initial saturation to a value of 0.11 for oil/water systems and 0.14 for gas/water systems. There then follows a region where the residual saturation is constant with further increases in initial saturation
A reactive transport model for geochemical mitigation of CO2 leaking into a confined aquifer
Long-term storage of anthropogenic CO2 in the subsurface generally assumes that caprock formations will serve as physical barriers to upward migration of CO2. However, as a precaution and to provide assurances to regulators and the public, monitoring is used detect any unexpected leakage from the storage reservoir. If a leak is found, the ability to rapidly deploy mitigation measures is needed. Here we use the TOUGHREACT code to develop a series of two-dimensional reactive transport simulations of the hydrogeochemical characteristics of a newly formed CO2 leak into an overlying aquifer. Using this model, we consider: (1) geochemical shifts in formation water indicative of a leak; (2) hydrodynamics of pumping wells in the vicinity of a leak; and (3) delivery of a sealant to a leak through an adjacent well bore.Our results demonstrate that characteristic shifts in pH and dissolved inorganic carbon can be detected in the aquifer prior to the breakthrough of supercritical CO2, and could offer a potential means of identifying small and newly formed leaks. Pumping water into the aquifer in the vicinity of the leak provides a hydrodynamic control that can temporarily mitigate the flux rate of CO2 and facilitate delivery of a sealant to the location of the caprock defect. Injection of a fluid-phase sealant through the pumping well is demonstrated by introduction of a silica-bearing alkaline flood, resulting in precipitation of amorphous silica in areas of neutral to acidic pH. Results show that a decrease in permeability of several orders of magnitude can be achieved with a high molar volume sealant, such that CO2 flux rate is decreased. However, individual simulation results are highly contingent upon both the properties of the sealant, the porosity-permeability relationship employed in the model, and the relative flux rates of CO2 and alkaline flood introduced into the aquifer. These conclusions highlight the need for both experimental data and controlled field tests to constrain modelling predictions
- …