46 research outputs found

    Transport Cycle of Mitochondrial Carriers from Internal Symmetries

    Get PDF

    Multiscale Simulations of Biological Membranes : The Challenge To Understand Biological Phenomena in a Living Substance

    Get PDF
    Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.Peer reviewe

    Dimerization of the pulmonary surfactant protein C in a membrane environment

    Get PDF
    Surfactant protein C (SP-C) has several functions in pulmonary surfactant. These include the transfer of lipids between different membrane structures, a role in surfactant recycling and homeostasis, and involvement in modulation of the innate defense system. Despite these important functions, the structures of functional SP-C complexes have remained unclear. SP-C is known to exist as a primarily alpha-helical structure with an apparently unstructured N-terminal region, yet there is recent evidence that the functions of SP-C could be associated with the formation of SP-C dimers and higher oligomers. In this work, we used molecular dynamics simulations, two-dimensional umbrella sampling, and well-tempered metadynamics to study the details of SP-C dimerization. The results suggest that SP-C dimerizes in pulmonary surfactant membranes, forming dimers of different topologies. The simulations identified a dimerization motif region V(21)xxxVxxxGxxxM(33) that is much larger than the putative A(30)xxxG(34) motif that is commonly assumed to control the dimerization of some alpha-helical transmembrane domains. The results provide a stronger basis for elucidating how SP-C functions in concert with other surfactant proteins.Peer reviewe

    Pulmonary Surfactant Lipid Reorganization Induced by the Adsorption of the Oligomeric Surfactant Protein B Complex

    Get PDF
    Surfactant protein B (SP-B) is essential in transferring surface-active phospholipids from membrane-based surfactant complexes into the alveolar air-liquid interface. This allows maintaining the mechanical stability of the surfactant film under high pressure at the end of expiration; therefore, SP-B is crucial in lung function. Despite its necessity, the structure and the mechanism of lipid transfer by SP-B have remained poorly characterized. Earlier, we proposed higher-order oligomerization of SP-B into ring-like supramolecular assemblies. In the present work, we used coarse-grained molecular dynamics simulations to elucidate how the ring-like oligomeric structure of SP-B determines its membrane binding and lipid transfer. In particular, we explored how SP-B interacts with specific surfactant lipids, and how consequently SP-B reorganizes its lipid environment to modulate the pulmonary surfactant structure and function. Based on these studies, there are specific lipid-protein interactions leading to perturbation and reorganization of pulmonary surfactant layers. Especially, we found compelling evidence that anionic phospholipids and cholesterol are needed or even crucial in the membrane binding and lipid transfer function of SP-B. Also, on the basis of the simulations, larger oligomers of SP-B catalyze lipid transfer between adjacent surfactant layers. Better understanding of the molecular mechanism of SP-B will help in the design of therapeutic SP-B-based preparations and novel treatments for fatal respiratory complications, such as the acute respiratory distress syndrome. (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions

    Get PDF
    G protein-coupled receptors (GPCRs) control cellular signaling and responses. Many of these GPCRs are modulated by cholesterol and polyunsaturated fatty acids (PUFAs) which have been shown to co-exist with saturated lipids in ordered membrane domains. However, the lipid compositions of such domains extracted from the brain cortex tissue of individuals suffering from GPCR-associated neurological disorders show drastically lowered levels of PUFAs. Here, using free energy techniques and multiscale simulations of numerous membrane proteins, we show that the presence of the PUFA DHA helps helical multi-pass proteins such as GPCRs partition into ordered membrane domains. The mechanism is based on hybrid lipids, whose PUFA chains coat the rough protein surface, while the saturated chains face the raft environment, thus minimizing perturbations therein. Our findings suggest that the reduction of GPCR partitioning to their native ordered environments due to PUFA depletion might affect the function of these receptors in numerous neurodegenerative diseases, where the membrane PUFA levels in the brain are decreased. We hope that this work inspires experimental studies on the connection between membrane PUFA levels and GPCR signaling. Author summary Our current picture of cellular membranes depicts them as laterally heterogeneous sheets of lipids crowded with membrane proteins. These proteins often require a specific lipid environment to efficiently perform their functions. Certain neuroreceptor proteins are regulated by membrane cholesterol that is considered to be enriched in ordered membrane domains. In the brain, these very same domains also contain a fair amount of polyunsaturated fatty acids (PUFAs) that have also been discovered to interact favorably with many receptor proteins. However, certain neurological diseasesassociated with the inadequate functioning of the neuroreceptorsseem to result in the decrease of brain PUFA levels. We hypothesized that this decrease in PUFA levels somehow inhibits receptor partitioning to cholesterol-rich domains, which could further compromise their function. We verified our hypothesis by an extensive set of computer simulations. They demonstrated that the PUFA-receptor interaction indeed leads to favorable partitioning of the receptors in the cholesterol-rich ordered domains. Moreover, the underlying mechanism based on the shielding of the rough protein surface by the PUFAs seems to be exclusive for multi-helical protein structures, of which neuroreceptors are a prime example.Peer reviewe

    Molecular mechanism for inhibition of twinfilin by phosphoinositides

    Get PDF
    Membrane phosphoinositides control organization and dynamics of the actin cytoskeleton by regulating the activities of several key actin-binding proteins. Twinfilin is an evolutionarily conserved protein that contributes to cytoskeletal dynamics by interacting with actin monomers, filaments, and the heterodimeric capping protein. Twinfilin also binds phosphoinositides, which inhibit its interactions with actin, but the underlying mechanism has remained unknown. Here, we show that the high-affinity binding site of twinfilin for phosphoinositides is located at the C-terminal tail region, whereas the two actin-depolymerizing factor (ADF)/cofilin-like ADF homology domains of twinfilin bind phosphoinositides only with low affinity. Mutagenesis and biochemical experiments combined with atomistic molecular dynamics simulations reveal that the C-terminal tail of twinfilin interacts with membranes through a multivalent electrostatic interaction with a preference toward phosphatidylinositol 3,5-bisphosphate (PI(3,5)P-2), PI(4,5)P-2, and PI(3,4,5)P-3. This initial interaction places the actin-binding ADF homology domains of twinfilin in close proximity to the membrane and subsequently promotes their association with the membrane, thus leading to inhibition of the actin interactions. In support of this model, a twinfilin mutant lacking the C-terminal tail inhibits actin filament assembly in a phosphoinositide-insensitive manner. Our mutagenesis data also reveal that the phosphoinositide-and capping protein-binding sites overlap in the C-terminal tail of twinfilin, suggesting that phosphoinositide binding additionally inhibits the interactions of twinfilin with the heterodimeric capping protein. The results demonstrate that the conserved C-terminal tail of twinfilin is a multifunctional binding motif, which is crucial for interaction with the heterodimeric capping protein and for tethering twinfilin to phosphoinositide-rich membranes.Peer reviewe

    Maturation of the SARS-CoV-2 virus is regulated by dimerization of its main protease

    Get PDF
    SARS-CoV-2 main protease (Mpro) involved in COVID-19 is required for maturation of the virus and infection of host cells. The key question is how to block the activity of Mpro. By combining atomistic simulations with machine learning, we found that the enzyme regulates its own activity by a collective allosteric mechanism that involves dimerization and binding of a single substrate. At the core of the collective mechanism is the coupling between the catalytic site residues, H41 and C145, which direct the activity of Mpro dimer, and two salt bridges formed between R4 and E290 at the dimer interface. If these salt bridges are mutated, the activity of Mpro is blocked. The results suggest that dimerization of main proteases is a general mechanism to foster coronavirus proliferation, and propose a robust drug-based strategy that does not depend on the frequently mutating spike proteins at the viral envelope used to develop vaccines. (c) 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Peer reviewe
    corecore