501 research outputs found
Leaf Dry Matter Content of Native Grassland Species Under Contrasting N and P Supply
The management of native grasslands - herbaceous vegetation with a broad diversity of flora and a large range of uses - must meet the requirements of environmental conservation and improvement of the quality of agricultural production. For this purpose we need tools for diagnosing the state of the vegetation in order to design, evaluate, and apply management practices to attain these objectives. These tools must be simple and quick to use and should not require botanical skills. Leaf dry matter content (LDMC) has been proposed as a good indicator of both fertility gradients and species preference for habitats (Cruz et al., 2002). The aim of this work was to test the robustness of this leaf trait to rank species for differences in their growth strategies and nutrient acquisition
Activation of the heat shock transcription factor Hsf1 is essential for the full virulence of the fungal pathogen Candida albicans
Peer reviewedPublisher PD
Glucose Promotes Stress Resistance in the Fungal Pathogen \u3ci\u3eCandida albicans\u3c/i\u3e
Metabolic adaptation, and in particular the modulation of carbon assimilatory pathways during disease progression, is thought to contribute to the pathogenicity of Candida albicans. Therefore, we have examined the global impact of glucose upon the C. albicans transcriptome, testing the sensitivity of this pathogen to wide-ranging glucose levels (0.01, 0.1, and 1.0%). We show that, like Saccharomyces cerevisiae, C. albicans is exquisitely sensitive to glucose, regulating central metabolic genes even in response to 0.01% glucose. This indicates that glucose concentrations in the bloodstream (approximate range 0.05–0.1%) have a significant impact upon C. albicans gene regulation. However, in contrast to S. cerevisiae where glucose down-regulates stress responses, some stress genes were induced by glucose in C. albicans. This was reflected in elevated resistance to oxidative and cationic stresses and resistance to an azole antifungal agent. Cap1 and Hog1 probably mediate glucose-enhanced resistance to oxidative stress, but neither is essential for this effect. However, Hog1 is phosphorylated in response to glucose and is essential for glucose-enhanced resistance to cationic stress. The data suggest that, upon entering the bloodstream, C. albicans cells respond to glucose increasing their resistance to the oxidative and cationic stresses central to the armory of immunoprotective phagocytic cells
Does Treewidth Help in Modal Satisfiability?
Many tractable algorithms for solving the Constraint Satisfaction Problem
(CSP) have been developed using the notion of the treewidth of some graph
derived from the input CSP instance. In particular, the incidence graph of the
CSP instance is one such graph. We introduce the notion of an incidence graph
for modal logic formulae in a certain normal form. We investigate the
parameterized complexity of modal satisfiability with the modal depth of the
formula and the treewidth of the incidence graph as parameters. For various
combinations of Euclidean, reflexive, symmetric and transitive models, we show
either that modal satisfiability is FPT, or that it is W[1]-hard. In
particular, modal satisfiability in general models is FPT, while it is
W[1]-hard in transitive models. As might be expected, modal satisfiability in
transitive and Euclidean models is FPT.Comment: Full version of the paper appearing in MFCS 2010. Change from v1:
improved section 5 to avoid exponential blow-up in formula siz
Glucose Promotes Stress Resistance in the Fungal Pathogen \u3ci\u3eCandida albicans\u3c/i\u3e
Metabolic adaptation, and in particular the modulation of carbon assimilatory pathways during disease progression, is thought to contribute to the pathogenicity of Candida albicans. Therefore, we have examined the global impact of glucose upon the C. albicans transcriptome, testing the sensitivity of this pathogen to wide-ranging glucose levels (0.01, 0.1, and 1.0%). We show that, like Saccharomyces cerevisiae, C. albicans is exquisitely sensitive to glucose, regulating central metabolic genes even in response to 0.01% glucose. This indicates that glucose concentrations in the bloodstream (approximate range 0.05–0.1%) have a significant impact upon C. albicans gene regulation. However, in contrast to S. cerevisiae where glucose down-regulates stress responses, some stress genes were induced by glucose in C. albicans. This was reflected in elevated resistance to oxidative and cationic stresses and resistance to an azole antifungal agent. Cap1 and Hog1 probably mediate glucose-enhanced resistance to oxidative stress, but neither is essential for this effect. However, Hog1 is phosphorylated in response to glucose and is essential for glucose-enhanced resistance to cationic stress. The data suggest that, upon entering the bloodstream, C. albicans cells respond to glucose increasing their resistance to the oxidative and cationic stresses central to the armory of immunoprotective phagocytic cells
Hsp21potentiates antifungal drug tolerance in Candida albicans
Peer reviewedPublisher PD
- …