307 research outputs found

    Remarks by David F. Cavers to Duke Students Converning the Origin of and Vision for Law and Contemporary Problems

    Get PDF
    Objectives To present a method for generating reference maps of typical brain characteristics of groups of subjects using a novel combination of rapid quantitative Magnetic Resonance Imaging (qMRI) and brain normalization. The reference maps can be used to detect significant tissue differences in patients, both locally and globally. Materials and Methods A rapid qMRI method was used to obtain the longitudinal relaxation rate (R1), the transverse relaxation rate (R2) and the proton density (PD). These three tissue properties were measured in the brains of 32 healthy subjects and in one patient diagnosed with Multiple Sclerosis (MS). The maps were normalized to a standard brain template using a linear affine registration. The differences of the mean value ofR1, R2 and PD of 31 healthy subjects in comparison to the oldest healthy subject and in comparison to an MS patient were calculated. Larger anatomical structures were characterized using a standard atlas. The vector sum of the normalized differences was used to show significant tissue differences. Results The coefficient of variation of the reference maps was high at the edges of the brain and the ventricles, moderate in the cortical grey matter and low in white matter and the deep grey matter structures. The elderly subject mainly showed significantly lower R1 and R2 and higher PD values along all sulci. The MS patient showed significantly lower R1 and R2 and higher PD values at the edges of the ventricular system as well as throughout the periventricular white matter, at the internal and external capsules and at each of the MS lesions. Conclusion Brain normalization of rapid qMRI is a promising new method to generate reference maps of typical brain characteristics and to automatically detect deviating tissue properties in the brain

    The Role of Attorney Fee Shifting in Public Interest Litigation

    Get PDF
    BACKGROUND: Brain tissue segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) are important in neuroradiological applications. Quantitative Mri (qMRI) allows segmentation based on physical tissue properties, and the dependencies on MR scanner settings are removed. Brain tissue groups into clusters in the three dimensional space formed by the qMRI parameters R1, R2 and PD, and partial volume voxels are intermediate in this space. The qMRI parameters, however, depend on the main magnetic field strength. Therefore, longitudinal studies can be seriously limited by system upgrades. The aim of this work was to apply one recently described brain tissue segmentation method, based on qMRI, at both 1.5 T and 3.0 T field strengths, and to investigate similarities and differences. METHODS: In vivo qMRI measurements were performed on 10 healthy subjects using both 1.5 T and 3.0 T MR scanners. The brain tissue segmentation method was applied for both 1.5 T and 3.0 T and volumes of WM, GM, CSF and brain parenchymal fraction (BPF) were calculated on both field strengths. Repeatability was calculated for each scanner and a General Linear Model was used to examine the effect of field strength. Voxel-wise t-tests were also performed to evaluate regional differences. RESULTS: Statistically significant differences were found between 1.5 T and 3.0 T for WM, GM, CSF and BPF (p<0.001). Analyses of main effects showed that WM was underestimated, while GM and CSF were overestimated on 1.5 T compared to 3.0 T. The mean differences between 1.5 T and 3.0 T were -66 mL WM, 40 mL GM, 29 mL CSF and -1.99% BPF. Voxel-wise t-tests revealed regional differences of WM and GM in deep brain structures, cerebellum and brain stem. CONCLUSIONS: Most of the brain was identically classified at the two field strengths, although some regional differences were observed

    Effect of oxide traps on channel transport characteristics in graphene field effect transistors

    Get PDF
    A semiempirical model describing the influence of interface states on characteristics of gate capacitance and drain resistance versus gate voltage of top gated graphene field effect transistors is presented. By fitting our model to measurements of capacitance–voltage characteristics and relating the applied gate voltage to the Fermi level position, the interface state density is found. Knowing the interface state density allows us to fit our model to measured drain resistance–gate voltage characteristics. The extracted values of mobility and residual charge carrier concentration are compared with corresponding results from a commonly accepted model which neglects the effect of interface states. The authors show that mobility and residual charge carrier concentration differ significantly, if interface states are neglected. Furthermore, our approach allows us to investigate in detail how uncertainties in material parameters like the Fermi velocity and contact resistance influence the extracted values of interface state density, mobility, and residual charge carrier concentration

    Feasibility of Ambient RF Energy Harvesting for Self-Sustainable M2M Communications Using Transparent and Flexible Graphene Antennas

    Get PDF
    Lifetime is a critical parameter in ubiquitous, battery-operated sensors for machine-to-machine (M2M) communication systems, an emerging part of the future Internet of Things. In this practical article, the performance of radio frequency (RF) to DC energy converters using transparent and flexible rectennas based on graphene in an ambient RF energyharvesting scenario is evaluated. Full-wave EM simulations of a dipole antenna assuming the reported state-of-the-art sheet resistance for few-layer, transparent graphene yields an estimated ohmic efficiency of 5 %. In the power budget calculation, the low efficiency of transparent graphene antennas is an issue because of the relatively low amount of available ambient RF energy in the frequency bands of interest, which together sets an upper limit on the harvested energy available for the RF-powered device. Using a commercial diode rectifier and an off-the-shelf wireless system for sensor communication, the graphene-based solution provides only a limited battery lifetime extension. However, for ultra-low-power technologies currently at the research stage, more advantageous ambient energy levels, or other use cases with infrequent data transmission, graphene-based solutions may be more feasible

    Gd2O3 nanoparticles in hematopoietic cells for MRI contrast enhancement

    Get PDF
    As the utility of magnetic resonance imaging (MRI) broadens, the importance of having specific and efficient contrast agents increases and in recent time there has been a huge development in the fields of molecular imaging and intracellular markers. Previous studies have shown that gadolinium oxide (Gd2O3) nanoparticles generate higher relaxivity than currently available Gd chelates: In addition, the Gd2O3 nanoparticles have promising properties for MRI cell tracking. The aim of the present work was to study cell labeling with Gd2O3 nanoparticles in hematopoietic cells and to improve techniques for monitoring hematopoietic stem cell migration by MRI. Particle uptake was studied in two cell lines: the hematopoietic progenitor cell line Ba/F3 and the monocytic cell line THP-1. Cells were incubated with Gd2O3 nanoparticles and it was investigated whether the transfection agent protamine sulfate increased the particle uptake. Treated cells were examined by electron microscopy and MRI, and analyzed for particle content by inductively coupled plasma sector field mass spectrometry. Results showed that particles were intracellular, however, sparsely in Ba/F3. The relaxation times were shortened with increasing particle concentration. Relaxivities, r1 and r2 at 1.5 T and 21°C, for Gd2O3 nanoparticles in different cell samples were 3.6–5.3 s−1 mM−1 and 9.6–17.2 s−1 mM−1, respectively. Protamine sulfate treatment increased the uptake in both Ba/F3 cells and THP-1 cells. However, the increased uptake did not increase the relaxation rate for THP-1 as for Ba/F3, probably due to aggregation and/or saturation effects. Viability of treated cells was not significantly decreased and thus, it was concluded that the use of Gd2O3 nanoparticles is suitable for this type of cell labeling by means of detecting and monitoring hematopoietic cells. In conclusion, Gd2O3 nanoparticles are a promising material to achieve positive intracellular MRI contrast; however, further particle development needs to be performed

    Circulating protein biomarkers predict incident hypertensive heart failure independently of N-terminal pro-B-type natriuretic peptide levels

    Get PDF
    Aims Hypertension is the leading cause for the development of heart failure (HF). Here, we aimed to identify cardiomyocyte stretch-induced circulating biomarkers for predicting hypertension-associated HF. Methods and results Circulating levels of 149 proteins were measured by proximity extension assay at baseline examination in 4742 individuals from the Malmo Diet and Cancer study. Protein levels were compared with stretch-activated gene expression changes in cultured neonatal rat ventricular myocytes (NRVMs) in response to 1-48 h of mechanical stretch. We also studied the association between protein levels and hypertension and HF incidence using respectively binary logistic and Cox regressions. Levels of 35 proteins were differentially expressed after Bonferroni correction in incident HF vs. control (P <3.4E-4). Growth differentiation factor-15 (GDF-15), interleukin-6 (IL-6), IL-1 receptor type 1, and urokinase plasminogen activator surface receptor had corresponding mRNA levels up-regulated by stretch in NRVMs at all time points (P <0.05). These four proteins were individually associated with increased risk of HF after age and sex adjustment [hazard ratio (HR) per standard deviation: 1.19 Conclusions Cardiomyocyte mRNA levels of GDF-15 and IL-6 are consistently up-regulated by stretch, and their circulating protein levels predict HF in hypertensive subjects independently of NT-proBNP during long-term follow-up. Our results encourage further studies on lower blood pressure goals in hypertensive subjects with high GDF-15 and IL-6, and interventions targeted at stretch-induced cardiomyocyte expressed biomarkers.Peer reviewe

    Circulating soluble IL-6 receptor associates with plaque inflammation but not with atherosclerosis severity and cardiovascular risk

    Get PDF
    Background: The residual cardiovascular risk in subjects receiving guideline-recommended therapy is related to persistent vascular inflammation and IL-6 represents a target for its treatment. IL-6 binds to receptors on leukocytes and hepatocytes and/or by forming complexes with soluble IL-6 receptors (sIL-6R) binding to gp130 which is present on all cells. Here we aimed to estimate the associations of these two pathways with risk of cardiovascular disease (CVD).Methods: IL-6 and sIL-6R were analyzed using the proximity extension assay. Baseline plasma samples were obtained from participants in the prospective Malmö Diet and Cancer (MDC) study (n = 4661), the SUMMIT VIP study (n = 1438) and the Carotid Plaque Imaging Project (CPIP, n = 285). Incident clinical events were obtained through national registers. Plaques removed at surgery were analyzed by immunohistochemistry and biochemical methods.Results: During 23.1 ± 7.0 years follow-up, 575 subjects in the MDC cohort suffered a first myocardial infarction. Subjects in the highest tertile of IL-6 had an increased risk compared to the lowest tertile (HR and 95% CI 2.60 [2.08-3.25]). High plasma IL-6 was also associated with more atherosclerosis, increased arterial stiffness, and impaired endothelial function in SUMMIT VIP, but IL-6 was only weakly associated with plaque inflammation in CPIP. sIL-6R showed no independent association with risk of myocardial infarction, atherosclerosis severity or vascular function, but was associated with plaque inflammation.Conclusions: Our findings show that sIL-6R is a poor marker of CVD risk and associated vascular changes. However, the observation that sIL-6R reflects plaque inflammation highlights the complexity of the role of IL-6 in CVD.</p

    Pursuing More Sustainable Consumption by Analyzing Household Metabolism in European Countries and Cities

    Get PDF
    Bringing about more sustainable consumption patterns is an important challenge for society and science. In this article the concept of household metabolism is applied to analyzing consumption patterns and to identifying possibilities for the development of sustainable household consumption patterns. Household metabolism is determined in terms of total energy requirements, including both direct and indirect energy requirements, using a hybrid method. This method enables us to evaluate various determinants of the environmental load of consumption consistently at several levels—the national level, the local level, and the household level. The average annual energy requirement of households varies considerably between the Netherlands, the United Kingdom, Norway, and Sweden, as well as within these countries. The average expenditure level per household explains a large part of the observed variations. Differences between these countries are also related to the efficiency of the production sectors and to the energy supply system. The consumption categories of food, transport, and recreation show the largest contributions to the environmental load. A comparison of consumer groups with different household characteristics shows remarkable differences in the division of spending over the consumption categories. Thus, analyses of different types of households are important for providing a basis for options to induce decreases of the environmental load of household consumption. At the city level, options for change are provided by an analysis of the city infrastructure, which determines a large part of the direct energy use by households (for transport and heating). At the national level, energy efficiency in production and in electricity generation is an important trigger for decreasing household energy requirements.

    Direct association between diet and the stability of human atherosclerotic plaque

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Mediterranean diet has been suggested to explain why coronary heart disease mortality is lower in southern than northern Europe. Dietary habits can be revealed by isotope ratio mass spectrometry (IRMS) measurement of carbon (δ(13)C) and nitrogen (δ(15)N) in biological tissues. To study if diet is associated with human plaque stability, atherosclerotic plaques from carotid endarterectomy on 56 patients (21 Portuguese and 35 Swedish) were analysed by IRMS and histology. Plaque components affecting rupture risk were measured. Swedish plaques had more apoptosis, lipids and larger cores, as well as fewer proliferating cells and SMC than the Portuguese, conferring the Swedish a more rupture-prone phenotype. Portuguese plaques contained higher δ(13)C and δ(15)N than the Swedish, indicating that Portuguese plaques were more often derived from marine food. Plaque δ(13)C correlated with SMC and proliferating cells, and inversely with lipids, core size, apoptosis. Plaque δ(15)N correlated with SMC and inversely with lipids, core size and apoptosis. This is the first observational study showing that diet is reflected in plaque components associated with its vulnerability. The Portuguese plaques composition is consistent with an increased marine food intake and those plaques are more stable than those from Swedish patients. Marine-derived food is associated with plaque stability.info:eu-repo/semantics/publishedVersio
    corecore