685 research outputs found
Uniformly high order accurate essentially non-oscillatory schemes 3
In this paper (a third in a series) the construction and the analysis of essentially non-oscillatory shock capturing methods for the approximation of hyperbolic conservation laws are presented. Also presented is a hierarchy of high order accurate schemes which generalizes Godunov's scheme and its second order accurate MUSCL extension to arbitrary order of accuracy. The design involves an essentially non-oscillatory piecewise polynomial reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell. The reconstruction algorithm is derived from a new interpolation technique that when applied to piecewise smooth data gives high-order accuracy whenever the function is smooth but avoids a Gibbs phenomenon at discontinuities. Unlike standard finite difference methods this procedure uses an adaptive stencil of grid points and consequently the resulting schemes are highly nonlinear
Field theory simulation of Abelian-Higgs cosmic string cusps
We have performed a lattice field theory simulation of cusps in Abelian-Higgs
cosmic strings. The results are in accord with the theory that the portion of
the strings which overlaps near the cusp is released as radiation. The radius
of the string cores which must touch to produce the evaporation is
approximately in natural units. In general, the modifications to the
string shape due to the cusp may produce many cusps later in the evolution of a
string loop, but these later cusps will be much smaller in magnitude and more
closely resemble kinks.Comment: 9 pages, RevTeX, 13 figures with eps
Numerical Methods for Multilattices
Among the efficient numerical methods based on atomistic models, the
quasicontinuum (QC) method has attracted growing interest in recent years. The
QC method was first developed for crystalline materials with Bravais lattice
and was later extended to multilattices (Tadmor et al, 1999). Another existing
numerical approach to modeling multilattices is homogenization. In the present
paper we review the existing numerical methods for multilattices and propose
another concurrent macro-to-micro method in the numerical homogenization
framework. We give a unified mathematical formulation of the new and the
existing methods and show their equivalence. We then consider extensions of the
proposed method to time-dependent problems and to random materials.Comment: 31 page
Absorbing boundary conditions for the Westervelt equation
The focus of this work is on the construction of a family of nonlinear
absorbing boundary conditions for the Westervelt equation in one and two space
dimensions. The principal ingredient used in the design of such conditions is
pseudo-differential calculus. This approach enables to develop high order
boundary conditions in a consistent way which are typically more accurate than
their low order analogs. Under the hypothesis of small initial data, we
establish local well-posedness for the Westervelt equation with the absorbing
boundary conditions. The performed numerical experiments illustrate the
efficiency of the proposed boundary conditions for different regimes of wave
propagation
Matching Conditions in Atomistic-Continuum Modeling of Materials
A new class of matching condition between the atomistic and continuum regions
is presented for the multi-scale modeling of crystals. They ensure the accurate
passage of large scale information between the atomistic and continuum regions
and at the same time minimize the reflection of phonons at the interface. These
matching conditions can be made adaptive if we choose appropriate weight
functions. Applications to dislocation dynamics and friction between
two-dimensional atomically flat crystal surfaces are described.Comment: 6 pages, 4 figure
Recommended from our members
Is the Helmholtz equation really sign-indefinite?
The usual variational (or weak) formulations of the Helmholtz equation are sign-indefinite in the sense that the bilinear forms cannot be bounded below by a positive multiple of the appropriate norm squared. This is often for a good reason, since in bounded domains under certain boundary conditions the solution of the Helmholtz equation is not unique at wavenumbers that correspond to eigenvalues of the Laplacian, and thus the variational problem cannot be sign-definite. However, even in cases where the solution is unique for all wavenumbers, the standard variational formulations of the Helmholtz equation are still indefinite when the wavenumber is large. This indefiniteness has implications for both the analysis and the practical implementation of finite element methods. In this paper we introduce new sign-definite (also called coercive or elliptic) formulations of the Helmholtz equation posed in either the interior of a star-shaped domain with impedance boundary conditions, or the exterior of a star-shaped domain with Dirichlet boundary conditions. Like the standard variational formulations, these new formulations arise just by multiplying the Helmholtz equation by particular test functions and integrating by parts
Fourier Method for Approximating Eigenvalues of Indefinite Stekloff Operator
We introduce an efficient method for computing the Stekloff eigenvalues
associated with the Helmholtz equation. In general, this eigenvalue problem
requires solving the Helmholtz equation with Dirichlet and/or Neumann boundary
condition repeatedly. We propose solving the related constant coefficient
Helmholtz equation with Fast Fourier Transform (FFT) based on carefully
designed extensions and restrictions of the equation. The proposed Fourier
method, combined with proper eigensolver, results in an efficient and clear
approach for computing the Stekloff eigenvalues.Comment: 12 pages, 4 figure
The Generalized Dirichlet to Neumann map for the KdV equation on the half-line
For the two versions of the KdV equation on the positive half-line an
initial-boundary value problem is well posed if one prescribes an initial
condition plus either one boundary condition if and have the
same sign (KdVI) or two boundary conditions if and have
opposite sign (KdVII). Constructing the generalized Dirichlet to Neumann map
for the above problems means characterizing the unknown boundary values in
terms of the given initial and boundary conditions. For example, if
and are given for the KdVI
and KdVII equations, respectively, then one must construct the unknown boundary
values and , respectively. We
show that this can be achieved without solving for by analysing a
certain ``global relation'' which couples the given initial and boundary
conditions with the unknown boundary values, as well as with the function
, where satisifies the -part of the associated
Lax pair evaluated at . Indeed, by employing a Gelfand--Levitan--Marchenko
triangular representation for , the global relation can be solved
\emph{explicitly} for the unknown boundary values in terms of the given initial
and boundary conditions and the function . This yields the unknown
boundary values in terms of a nonlinear Volterra integral equation.Comment: 21 pages, 3 figure
New Integrable Structures in Large-N QCD
We study the anomalous dimensions of single trace operators composed of field
strengths in large-N QCD. The matrix of anomalous dimensions is
the Hamiltonian of a compact spin chain with two spin one representations at
each vertex corresponding to the selfdual and anti-selfdual components of
. Due to the special form of the interaction it is possible to
study separately renormalization of purely selfdual components. In this sector
the Hamiltonian is integrable and can be exactly solved by Bethe ansatz. Its
continuum limit is described by the level two SU(2) WZW model.Comment: 12 pages; V2: ref. added, V3: refs. added, explicit expression for
the spin ladder and other text improvement
Projected SO(5) Hamiltonian for Cuprates and Its Applications
The projected SO(5) (pSO(5)) Hamiltonian incorporates the quantum spin and
superconducting fluctuations of underdoped cuprates in terms of four bosons
moving on a coarse grained lattice. A simple mean field approximation can
explain some key feautures of the experimental phase diagram: (i) The Mott
transition between antiferromagnet and superconductor, (ii) The increase of T_c
and superfluid stiffness with hole concentration x and (iii) The increase of
antiferromagnetic resonance energy as sqrt{x-x_c} in the superconducting phase.
We apply this theory to explain the ``two gaps'' problem found in underdoped
cuprate Superconductor-Normal- Superconductor junctions. In particular we
explain the sharp subgap Andreev peaks of the differential resistance, as
signatures of the antiferromagnetic resonance (the magnon mass gap). A critical
test of this theory is proposed. The tunneling charge, as measured by shot
noise, should change by increments of Delta Q= 2e at the Andreev peaks, rather
than by Delta Q=e as in conventional superconductors.Comment: 3 EPS figure
- …
