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- ABSTRACT

In this paper, a third in a series we continue the construction and the analysis
of essentially non-oscillatory shock capturing methods for the approximation of
‘hyperbolic conservation laws. We present an hierarchy of uniformly nigh order
accurate schemes which generalizes Godunov’s scheme and its second order accurate
MUSCL extension to arbitrary order of accuracy. The design involves an essentially
non-cscillatory piecewise polynomial reconstruction of the solution from its cell

averages. time evolution through an approximate solution of the resulting initial

vaiue problem, and averaging of this approximate solution over each cell. The
reconstruction algorithm is derived from a new interpolation technique that when
applied to piecewise smooth data gives high-order accuracy whenever the function
is smooth but avoids a Gibbs phenomenon at discontinuities. Unlike standard
finite difference methods this procedure uses an adaptive stencil of grid points and

cousequently the resulting schemes are highly nonlinear.
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1. introduction. In this paper, the third in a series we continue to study
the use of essentially nonoscillatory, uniformly high-order accurate schemes for the

numerical approximation of weak solutions of hyperbolic systems of conservation

laws
(1.1a) u + f(u): =0
(1.1b) u(z,0) = uo(z).

Here u = (u,...,um)7T is a state vector and f(u), the flux, is a vector valued
function of m components. The system is hyperbolic in the sense that the m x m

Jacobian matrix

A(u) =0f/0n

has m real eigenvalues

ay(u) < az(u) < <am(y)

and a complete set of m linearly independent right-eigenvectors {ri(u)}ir,. We
denote by {lx(u)}iv, the left-eigenvectors of A(u) and assume that l;rp = €.

We assume that the initial value problem (IVP) (1.1) (embedded in an appro-
priate setting which includes entropy considerations) is well-posed in tke sense of
Cauchy and that its weak solutions are generically piecewise smooth. We denote

its evolution operator by E(t), i.e.
(1.2) u(,t) = E(t) - uo.
Let w(z) denote the sliding average of w(z)

(1.3a) w(z)

I
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We note that w is smoother than w by one derivative, and that at points of

smoothness
(1.3L) w(z) = w(z) + O(h?).

The sliding average in z of a weak solution of (1.1), 4(z, 1), satisfies
(1.4) %a(x, ) + %[f(u(z +h/2,)) = f(u(z - h/2,8))] = 0.
Integrating this relation from ¢ to ¢ + 1, we get
(1.5a) 4(z,t + 1) = 4(z,t) - A|f(z + h/2,t;u) - f(z ~ h/2,t; u)|
where A = 7/h and
(1.5b) ztw) /f w(z,t +n))dn

Let {I; x [tn,tny,]} where Ij = [z,_ 1) H_;] Io = ah, t, = nr, be a

partition of R x R*. Writing relation (1.5)at z=z,,t = ¢t, we get

(1.6a) B =87 - A f(zy0 g, tesu) - f(z Zi_1,taiu).
Here
(1.6b) 4} = 4(z;,t,) = %/ u(z,t,)dz

1

is the “cell-average” of u at time tn.
In this paper we describe a class of numerical schemes that generalizes
Godunov’s scheme (5] and its second order extensions ((22], (4], [15]) to any finite

order of accuracy. These schemes can be written in standard conservation form

(1.7a) v,'-”" =v] =AM fa —}:,_L)E(E'h(r)'v"),».




L

Here Ej(r) denotes the numerical soiution operator and fhé’ the numerical flux,

denotes a function of 2k variables

(17b) J"‘”é = f(v;l_k+}a"') v;+k))

which is consistent with the flux f(u) in (1.1) in the sense that f(u,u, ..., u) = flu

—

We design these schemes so thai the conservation form (1.7a) will approximate {1.3)
to high order of accuracy. Setting vl = 47 in (1.7, and comparing it to (1.6) we

see that if the numerical flux (1.7b} can be expanded as
(1.8a) fiey = flz, 4 taiu) ~ d(z, )h" ~ O(A"1)

then

n+l _ sn+i 4 _ YV RT =1y
vt =4 Ad(z, 4) = d(z,_y) A"~ O(h™ 1),

This shows that if the numerical flux f1+§ satisfies (1.8a) then the truncation error

in the sense of cell averages is
(1.8b)  a(z,.ty —7) = Enir)a( .t,), = Ad(z

which is O(h"* ') where d(z) is Lipschitz continuous.

When f(u) is a nonlinear function of u. the approximation of _‘;':_,, folalt to
O{h") requires knowiedge of pointwise values of the s-lution to the same orger of
accuracy. in order tc design a numerical lux that satisfies {1.8a}. we must exirac:
high order accurate pointwise information from the given {v}}. which are approxi-
mations to {47}, the cell averages (1.6b) of the solution. Solving this reconstruction
problem to arbitrarily high-order of accuracy r. without introducing O 1) Gibbs-

like spurious oscillations at points of discontinuity, is the most important siep 1o

the design of our new schemes.
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Given w; = w(z;), cell averages of a piecewise smooth function w(

struct R(z; ),

(r — 1) that satisfies:

(i) At all points z for which there is a neighborhood where w is smooth

(1.92) R(z; w) = w(z) + e(z)h" + O(h™*1y,

(i) conservation in the sense of

(1.9b) R(zj;w) = w,

here R denotes the sliding average (1.3) of R.

(iii) It is essentially non-oscillatory

(1.9¢) TV(R(;@)) < TV (w) + O(k"),

where TV denotes total-variation in z.

The inequality (1.9¢) implies that the reconstruction R is essentially non-

oscillatory in the sense that it does not have a Gibbs-like phenomenon of generating

O(1) spurious oscillations at points of discontinuity that are proportional to the size

of the jump there. In {16], [11], [17] we describe R(z;w) in the scalar case. We show

there that R may occasionally produce O(h") spurious oscillations which are on the

level of the truncation error. These small spurious oscillations may occur only in

the smooth part of w and they usually disappear once w(z) is adequately resolved

on the computational mesh. For sake of completeness we review this reconstruction

algorithm in scction 3; we shall extend it to vector functions w(z) in Section § of

this paper.

Using the reconstruction (1.9) we can express the abstract form of our new

schemes by

(1.10) En(r) @w= Ay E(r). R(;w).

z), we con-

a piecewise polynomial function of z of uniform polynomijal degree




Here A, is the cell-averaging operator on the RHS of ( 1.3); E(t) is the exact evolu-
tion operator (1.2) and w is any piecewise smooth function of z. These schemes are
a generalization of Godunov’s scheme and its second-order extensions in the sense

that (1.10) with the first order accurate piecewise constant reconstruction

(1.11) R(z; w) = wy forz; ,<z< T4

is exactly Godunov’s schemes ([5]); (1.10) with the second order accurate piecewise

linear reconstruction

-

(1.12a) R(z; @) = w; - s;(z — z,) for T3 S2<z;,y
such that
(1.12b) 8; = wz(z;) + O(h),

is the abstract form of the second-order extensions to Godunov’s scheme described
in [22],[4] and [15].
We recall that the evolution operator E(t) is monotone in the scalar case. Since

Ap, the cell-averaging operator is also monotone we see that in the scalar case
(1.13a) TV(En(r)w) = TV (A - E(r) R(;w)) < TV(R(;w)).

If @ in (1.13a) is the sliding average of a piecewise smooth function w(z), it

follows then from (1.9¢) that
(1.13b) TV(Ew(r)®) < TV{w) + O(k").

This shows tihat the schemes (1.10) in the scalar case are essentially non-
oscillatory in exactly the same way as the reconstruction: They do not have a

Gibbs-like phenomenon at discontinuities, yet they may occasionally produce small




spurious oscillations on the level O(h") of the trunction error (see Remark 1.3 at
the end of this section).

(1.10) is the abstract operator expression of a scheme in the conservation form
(1.7). Although the scheme generates discrete values v?, which are r-th order
accurate approximations to the cell-averages ay, its operation involves a globally
defined pointwise approximation to u{z,t) of the same order of accuracy, which we
denote by vi(z,t). The latter is defined for all z in the time-strips t, <t < tp41,
with a possible discontinuity at {tx}; we shall use the standard notation vx(z,ts £0)
to distinquish between the two possibly different values.

We define vy (z,t) via the following algorithmic description of the scheme (1.10).
We start by setting

v; = o(z;)

where ug is the given initial datum (1.1b), and o is its sliding average (1.3a).
Having defined v® = {v}}, approximation to {a?} in (1.6b), we proceed tc evaluate
v™*+! by the following three steps:

(i) Reconstruction: Define

(1.14a) vn(z, ta +0) = R(z;v"),

Note that vp(z,tn + 0) is 3 pointwise approximation to u(z,t,).

(i1) Solution in the small: Fort, <t <tp,+ 71 =1t,41, define

(1.14b) va(;t) = E(t = tn)  va(:itn +0).

(iii) Cell-averaging: Close the time-loop of the algorithm by defining

- L (7
(14) O =it -0 = [ izt~ 0)d
4
-4




We note that vy, being an exact solution of (1.1) in t, <t < tny1, satisfies

(1.5) in this strip. Using the conservation property (1.9b) of the reconstruction in

RAS LA LN UL R BRI VU LY

(1.14a), i.e.

b

n

we get from (1.5) that the scheme (1.10), (1.14) satisfies the conservation form

. _ _
(1.16a) =l - M - fi-1)

with the numerical flux

-

- 1 /7
(1.16b) fisa = f(zH%,tn;vh) = ;/ flvn(z;iatn + 7))dn.
0

We turn now to examine the local truncation error of the scheme. For this
purpose we consider a ¢! 1gle application of (1.14) starting with v = 47, the exact

cell-averages of the solution. It follows from (1.9a) and (1.14a) that

(1.17a) vn(Z,tn +0) = u(z,ty) + e(2)A +O(h™™).

The definition (1.14b) and our assumption of the well-posedness of the IVP (1.1)

imply that

(1.17b) va(z,t) = u(z,t) + O(R") for t, <t <tn.y.
This in turn . s that the numerical flux (1.16b) of the scheme satisfies (1.8a).
ie.

(1.17¢) fror = f(z,0p0taiu) = d(z, )R~ O(A"H).

(¥

Clearly non-smoothness of d(z) in (1.17¢) can result only from non-smoothness

of the coefficient ¢(z) in (1.17a). It follows then from (1.8b) that away from points




of discontinuity and points at which e(z) fails to be Lipschitz continuous, the local
truncation error in the sense of cell-averages is O(h"*!).

Let u(z,t) be a smooth solution of (1.1) and let us suppose that as h — 0, 7 =
O(h), the numerical approximation converges pointwise to u(z,t). If e(z) is globally
Lipschitz cntinuous then the local truncation error in the sense of cell averages is
globally O(h™*1). At time ¢, after performing N = t/7 time-steps, we expect the

cumulative error to be O(h"), i.e.
(1.18a) v}v = @(z;,tn) + O(h")
In this case we see from (1.9a) that
(1.18b) va(z,ty + 0) = R(z; vV) = u(z,ty) + O(R").

Thus at the end of the computation we have two sets of output data at our disposal:
(i) Discrete values {vJN} that approximate {@(z;,tn)} to O(R"). (ii) A piecewise

polynomial function of z, R(z; v¥), that approximates u(z,tn) to O(h").

REMARK: (1.1). Note that (1.8) is quite different from the truncation error in

a pointwise sense which is used in formulating Lax-Wendroff-type schemes [20],

21]. There we take v} = u(z;,tn) and require v;"H = u(zj,tns1) + O(R"F!). To

accomplish that we need a numerical flux that satisfies

_ _ r k gk
—’\(f]'-kl'_fj-—L):ZT -

Lz r+l
’ Yok & 30k e, ) TOTT):
=1

We shall see in the following that condition (1.8a) for the accuracy in a cell-average

sense is more manageable in many respects

REMARK (1.2): When e(z) fails to be Lipschitz continuous at a point, the local

truncation error (1.8b) is only D(h"). In the MUSCL-type schemes [22],(4] this




happens at local extremum points- in higher-order accurate schemes this may occur
at roots of higher derivatives of u (see [15], [11]). Due to local accumulation we
expect the pointwise error at time ¢, after N = t/r time-steps, to be only O(h™ 1)
at such points. Away from these points we expect the pointwise cumulative error to
remain O(h"). Consequently the scheme is (r—1)-tk order accurate in the maximum
norm. Because of the non-oscillatory nature of the schemes, we expect the number
of points where ¢(z) fails to be Lipschitz-continuous to remain bounded as h — 0.
In this case the L;-norm of the cumulative error is O(h"). To distinguish between
schemes that are r-th order accurate in the usual pointwise sense, and those that
are r-th order accurate in the L;-norm but only (r—1)-th accurate in the maximum
norm, we shall use “r-th order accurate” for the latter, thus qualifying the difference

by the use of quotation marks.

REMARK (1.3): It is well known that if the total variation of the numerical ap-

proximation is uniformly bourded, i.e.
(1.19) TV (v (-, 1)) < C - TV {uo)

where the constant C is independent of h for 0 < ¢ < T, then any refinement
sequence h — 0, 7 = O(h) has a subsequence that converges in L’ to a weak
solution of (1.1). Therefore uniform boundedness of the total variation is an appro-
priate sensc of stability for numerical approximations to discontinuous solutions of
(1.1); zee [9], [10] and the references cited there.

Inequality (1.13) shows that the total variation of our new schemes is dominated

by that of reconstruction step

(1.20) TV (v**!) < TV(R(;0")).
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When R is the piecewise-constant function (1.11) or the piecewise-linear function

(1.12) (where the slope s, is that of the MUSCL scheme) then
(1.21a) TV(R(;v)) < TV (v)

for any function v of bounded total variation. Consequently Godunov’s scheme and

the MUSCL scheme are total variation diminishing (TVD) in the scalar case
(1.21b) TV (v"**) < TV (v");

this trivially implies (1.19) with C = 1.

In proving relation (1.9¢c) for higher order reconstructions we have used the
assumption that for h sufficiently small there are at least r +1 points of smoothness
between discontinuities. Consequently we cannot apply this result to the numeri-
cal solution v™. Nevertheless, based on heuristic analysis and extensive numerical

experimentation, we conjecture that in the scalar case

(1.22) TV (v"*+!) < TV (v") + O(hPH})

for some p > 0.
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2. Review and overview. In (15|, the first paper of this series, we present
a second-order accurate scheme which is strictly non-oscillatory in the scalar case

(m=1)ie,
(2.1) No(v**1) < No(v")

where No(v) denotes the number of local extreme in v. This scheme is a modification
of the “second-order accurate” MUSCL scheme (22}, (4], which is total-variation-

diminishing (TVD) in the scalar case, i.e.
(2.2) TV (") < TV (™).

In order to enforce (2.2), the slope s; (1.12a) in the MUSCL scheme is sukjected
to a so called “limiter”. Due to the operation of this limiter, the coefficient in the
O(k) term in the Taylor expansion (1.12b) becomes discontinuous at local extrema:
Consequently e(z) in (1.9a) fails to be Lipschitz continuous at such points, which
leads to a loss of accuracy at local extrema. In [15]) this difficulty is circumvented

by using a modified slope s; in (1.12a) which satisfies
(2.3) 3; = wz(z5) + O(h?),

thus leading to a globally smooth e(z) in (1.9a).

Although the end result is a simple technical modification of the formula for
the slope s,, the design of the scheme in {15] invokes major conceptual changes.
Realizing that TVD schemes, independent of their particular form, are necessarily
only first-order accurate at local extrema, we seek a weaker notion of control over
possible growth of total variation of the numerical solution. For this purpose we
introduce the notion (2.1) of non-oscillatory schemes, which satisfy in the scalar

case for piecewise smooth w

(2.4) TV (En(7) - ©) < TV (w) + O(h?)
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rather than (2.2). In [16], the second paper in this series, we show that even the
notion of (strictly) non-oscillatory schemes (2.1) is too restrictive in the sense that
it limits the order of accuracy to 2. To enable the design of higher-order accurate
schemes we then introduce the notion of essentially non-oscillatory sckemes (1.13),
which excludes a Gibbs-like phenomenon but allows for the production of spurious
oscillations on the level of the truncation error.

Another conceptual change is the removal of the “monotonicity limiters” which
are an essential part of TVD schemies ([30]) and may cause reduction of order of
accuracy at some points. Our new schemes are of uniform order of accuracy r.
The control over possible growth of the total variation of the numerical solution is
obtained by an adaptive stencil that at cach point attempts to use the smoothest
information available. This adaptive selection of stencil is introduced to the algo-
rithm through the reconstruction step (1.14a). The number of points in the stencil,
independent of its orientation, is always (r + 1).

In 16}, the second paper in the series, we investigate the stability of our new

schemes in the scalar constant coefficient case
(2.5a) u +auy =0, a = constant.

The exact evolution operator (1.2) in this case is just a translation with the constant

speed a. Ther>fore our schemes (1.14) take the particnlarly simple form

{2.5b) v?“ = R(z, - ar;v").

Due to the adaptive seiection of stencil in the reconstruction step, the scheme (1.23b)
is highly noclinear; consequenily the use of the standard linear stability analysis is
inappropriate. We demonstrate this point in [16] by choosing initial data for which

the reconstruction algorithm selects a stencil that is biased in the “down-wind”

direction (i.e. in the dircction opposite to that of the wind); a constant choice of

i -
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such a stencil is notoriously unstable. Such an instability usually exhibits itself by
the production of increasing oscillations which starts at the highest derivative and
propagates to the function itself. The numerical experiment in [16] shows that once
these oscillations begin to appear on the level of the highest derivativg, the adaptive
selection of stencil in (2.5b) reacts by changing the orientation of the stencil and
thus avoids the build up of instability.

In [16] we also investigate the initial-boundary value problem (IBVP) for (2.5a).
Unlike the treatment of boundaries in standard finite-difference schemes we do not
use “numerical boundary conditions”. Instead we modify the scheme (2.5b) by
restricting the selection of the stencil to available information. As a result the
scheme is biased “against the wind” at one of the two boundaries. Nevertheless,
numerical experiments show the scheme to be strongly stable.

In the present paper, the third in the series, we turn to consider the general
nonlinear case. The abstract form of our schemes, (1.10) and (1.14), calls for the
evaluation of the exact solution in the small (i.e. for 0 <t < 7, 7 small) of the IVP
(1.1) with the initial data R(z;v"); the latter is a piecewise polynomial function of
z with possible discontinuities at {zﬂ%}.

When R(z;v") is the piecewise-constant function (1.11) {i.e. Godunov’s scheme),
we can express this solution in terms of local solutions to the Riemann problem

<0
I)U'

R

v

n
(2.7) ue + f(u)r =0, u(z,0) = { ’

I+l
Wh 1 R(z;v™) is a piecewise polynomial function of higher degree we cannot in
general express the solution of the IVP(1.1) in a simple closed form. Nevertheless,
(see [1], [6]) we can obtain a local Taylor expansion of the solution to any desired
order of accuracy.

We note, however, that the step of “solution-in-the-small” (1.14b) is followed

by the step of “cell-averaging” (1.14c). consequently many of the fine details of the
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exact solution, which may be very costly to compute, are later ignored in evalu-
ating v;"” by averaging the exact solution over (zj_é, a:j+%). To economize on
the cost of our schemes it makes sense to use simplified approximate “solvers” that
carry only this information which determines the value of the cell-average, namely
the one needed to compute a numerical flux satisfying (1.17¢). The study of such
approximate solvers is the main issue of the present paper. In Section 4 we con-
sider the scalar case; in Section 5 we extend the scheme to hypertolic systems of
conservation laws.

When we consider the reconstruction (1.9) in the context of approximation of
functions, the assumption that w(z) is piecewise smooth with a finite number of
discontinuities implies that for h sufficiently small these are at least (r + 1) points
of smoothness separating discontinuities on the computational grid. Therefore at
any point of smoothness it is possible to select a stencil from the smooth part of
the function. Although the z-behaviour of weak solutions of (1.1) is generically of
this type, their time dependence allows for collision of discontinuities, as well as
their collision with a boundary, e.g. solid walls. For points in a region between two
discontinuities that are about to collide, no matter how small is h, there must come
2 time when there are not enough points to select a stencil of (r -+ 1) points from
the region of smoothness. Consequently a component-wise extension of the scalar
reconstruction algorithm in [16] to vector functions may produce large spurious
oscillations during this briet encounter.

The elimination of such spurious oscillations has been a major consideration
in designing the extension of our scalar schemes to systeius of conservation laws.
In Section 5 we show that this can be accomplished to a great extent by extend-

ing the scalar reconstruction algorithms to systems vi- the use of locally defined

characteristic variables.
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In Section 6 we describe in detail the algorithm for the solution of the Euler

¢ ] equations of gas dynamics. In Section 7 we present some numerical experiments.

In future papers we shall present tbe extension of these schemes to

two-dimensional problems and study the dependence of the computational efficiency

on the order of accuracy of the scheme.




3. Reconstruction. In this section we present a brief Aescription of the
reconstruction R(z;w) to be used in (1.14a); we refer the reader to [16], [11], [17]
for mcre details and analysis. For this purpose we introduce H,,(z;w), a piecewise

polynomial function of z that interpolates w at the points {z;}, i.e.

(3.1a) Hp(z;;w) = w(z;),

(3.1b) Hy(z;w) = qm‘j+%(x;w) for z; <z < zj41,

where ¢, ;14 is a polynomial in z of degree m.
We take ¢, ;41 1O be the (unique) m-th degree polynomial that interpolates
w(z) at the (m + 1) successive points {(2:}, im(7) <1< im(s) +m, that include

z;j and Tj4q, L.

(3.2a) Qm.j+ 3 (T W) = w(z;) forim(s) <i<im(f)+m.

(3.2b)

Clearly there are exactly m such polynomials corresponding to the m different
choices of 1m(j) subject to (3.2b). This freedom is used to assign to (z,,Z,41) 2
stencil of (m + 1) points (3.2) so that w(z) is “smoothest” in (Z,_(;), Ti.(j)+m) iD
some asymptotic sense.

The informstion about smoothness of w(z) is extracted from a table of divided

differences of w. The latter can be defined recursively by

(3.3a) w(z,] = w(z,)

(33b)  wlzes oo Zuak] = (W[E0s 1y e Zik] = W(Ei o ok )/ (Biek = 7).
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It is well known that if w is Cy in [z;, Zi+k| then

1 d*

(3.3c) W(Zy, .., Tipk] = k—,mw(&.k), 7 S ik < Tigk-

However if w has a jump discontinuity in the p-th derivative in this interval

¥

0<p<k, then
(3.3d) [Ty, ..., Zivk] = O(hF+P[w(P)]);

here [wP)] denotes the jump in the p-th derivative. (3.3¢c)-(3.3d) show that
|w[z, ..., Zi+&]| provides an asymptotic measure of the smoothness of w in (Ziy Tivk),
in the sense that if w is smooth in (z;,, z;, 4&) but is discontinuous in (Ziy) Tig+k),
then for h sufficiently small |w(z,,,..., z;, 4&]| < |w(Ziyy ...y Ziy +k]|. Hence the prob-
lem of choosing a stencil of points for which w is “smoothest” is basically the same
as that of finding an interval in which w has the “smallest divided differences.” (see
[16], [11] for more details).

In [11] we propose the following recursive algorithm to evaluate tm(7). We

start by setting
(3.4a) u(s) =17,

lLe. G1.j+4 is the first-degree polynomial interpolating u' at z; and 1,,,. Let us
assume that we have already defined 1x(j), i.e. Qej+d is the k-th degree polynomial

interpolating w at
Zieigty o Tig(g)+ k-
We consider now as candidates for Qk+1.5+3 the two (k + 1)-th degree polynomials

obtained by adding to the above stencil the reighboring point to the left or the

one to the right; this corresponds to setting x4 (j) = 1x(j) = 1 or w1 () = w(y),




respectively. We choose the one that gives a (k+1)-th order divided difference that
is smaller in absolute value, i.e.

(3.4b)

. N w(j) -1 if !w[zi,,(j)—u e Biy (5) k]| < Iw[zik(j)y woor iy (5)+ k41|
et (7) =4 .
1 (7) otherwise.

In [16] we analyse this interpolation technique for a piecewise smooth function
w and show that: (i) wherever w(z) is smooth

dk k

d
(3.5a) T Hm(z3w) = ZoxW(2) + O(A™1F) 0 < k < m;

(ii) Hm(z; w) is an essentially non-oscillatory interpolation of w in the sense that
(3.5b) TV(Hu(;w)) < TV(w) + O(h™*1).

We turn now to describe two different techniques to solve the reconstruction
problem {1.9) in terms of interpolation. (See appendix for an algorithmic descrip-
tion).

(1) Reconstruction via Primitive function: Given cell averages w, of a piecewise

smooth function w

3

_ 1 [%+%
(3.6) Wy = o wlyldy, hj=z;4 -1z, 4,
2 .’t}_é

we can immediately evaluate the point-values of the primitive function W (z)
(3.7a)

by
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we apply interpolation to the point values (3.7b) of the primitive function W(z)

(3.7a) and then obtain an approximation to u(z) by defining
(3.8) R(z;w) = -d—H (z; W)
’ P T g

We note that this procedure does not require uniformity of the mesh.
The primitive function W(z) is by one derivative smoother than w(z), therefore

it follows from (3.5a) that wherever W(z) is smooth

d* . a* r+1~-ky .
—H, (; W) = -d?W(J:) + O(h )

(3.9) — R(z;w) = (—i—w(z) + O(h"‘),

which implies (1.9a) for { = 0.
The conservation property of the reconstruction (1.9b) follows immediately

from the definition (3.8):

1 T, +3 B 1
(3.10) L / R(z;0)dz = o [He(z,, ;W) = Holz, W)
J tl‘% p)

1 _
o Wizey) - W(z; 1)l = ;.

The non-oscillatory nature of the reconstruction (1.9¢) follows primarily from
the non-oscillatory nature of the interpolation (3.5b), see [16;.

We denote the reconstruction via primitive function (3.8) by RP.

(2) Reconstruction via deconvolution: We assume that the mesh is uniform and

consider the given cell-averages W, to be point values of w(z), the globally defined

sliding-average function (1.3) of w, i.e.

(3.11a) w, = w(z,),
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where
| [h2

(3.11b) w(z)= T / w(z + y)dy.
hJ_h2

Expanding w(z + y) in (3.11b) around y =0, we get

@ (k) h/2 0
W@ LT gy = Y ahkul®) (@)

(3.12a) o(z) =) —

k=0 —~h/2 k=0
where
0 k odd.
3.12b =
( ) k { 2k /(k+1)! keven

Multiplying both sides of (3.12a) by h!d'/dz' and then truncating the expansion in
the RHS at O(h"), we get

r-1-1
(3.13a) RaoW(z)= Y. aghFHw () + O(h")

%=0

Writing the relations (3.13a) for 1 = 0,...,r — 1 in a matrix form, we obtain

- ~
W(x) _‘ 1 0 o 0 g %oy w(x)
hw' (x) ) . hw' (x)
. 2_." - . . . ] 2 1 :
(3.13b) { R w"(x) = . ] . . 94 h'y " (x) + 0(h")
"o
o cxz
O .
Lh”" 7 " Lh""w“""(x)

Let us denote the coefficient matrix in the RHS of (3.13b) by C. This matrix
is upper triangular and diagonally dominant. Multiplying both sides of (3.13b) by

C ' from the left we get




Given @; we interpolate w(z) by Hp(z;®@) with m > r — 1. Since w(z) is
smoother than w(z) it follows from (3.5a) that

dk

dk
d—z—kH,,,(z;w) = ‘—i:—r;u'z(z) + O(hmtI—k)

wherever w(z) is smooth. We note that although H,, is only continuous at z;, the
one-sided derivatives at z; £ 0 do satisfy the above relations, i.e.

dk k

d i
(314) EFH,"(IJ‘ i O,tf)) = a?c'u_)(l'j) + O(h + k).

Next we define

(3.15a) Doy ; = wy
_ l dl dl
(3.15b) Dij = h M(-= Hn(z; = 0;0), -

‘dzt ™

for1 <Ii<r-1,

where M(z,y) is the min mod function

s-min(|z], ly]) if sgn(z) = sgn(y) = s

0 otherwise

(3.16) M(z,y) = {

Clearly

(3.17a)
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using D; = (Dg j,..., Dr—1,;)T to approximate the vector, on the RHS of (3.13c)

we get that

(3.17b) D; =C~'D;,

satisfies

(3.17¢) Dj = (w(z,), hw'(z;), ... ALYz, )T + O(A").

Finally we defire

1
(3.18) R(z,w) = E— Dy ;{(z — z7)/h|F  for |z — z;| < h/2.

x*
-

We note that since C is upper triangular D;; in (3.17b) can be computed by

back-substitution, i.e. we set
(3.192) D,_y; =D,y
and then compute for k=r - 2,...,0

(3.19b) Dk_j = Dk.j - Z y D('J‘.
I=k+1

It follows immediately from the definition (3.18) and the relations (3.17a) that

wherever w(z) is smooth

dl

d .
(3.20) E;R(r;u‘f) = d—z—‘w(x) +O(R™h);

this for [ = 0 implies (1.9a). The conservation property of the reconstruction (1.9b)

follows from

1 h/3 r—1 Dk,1 1 h/2 r—1
(3‘21);/ R(z + y,w)dy = T TEE /h/ yedy = Dy, + Z ar Di,
- ’ —h/2 k=1

e o e el A T




The last two equalities in (3.21) follow from (3.19b) with k = 0 and (3.15a).
The non-oscillatory nature of the reconstruction (1.9¢) follows primarily from
the non-oscillatory nature of the interpolation Hn(z; W); see [16] for more details.
We note that w(») is the convolution of w(z) with ¢, (z), the characteristic

function of a cell, i.e.

(3.22a) B(z) = (w = ¢ )(z)

1/h for |z| < h/2.
0 for |z| > h/2

(3.226) ¥n(z) = {

Hence (3.13¢) is actually a deconvolution to O(h™). Therefore we refer to (3.18) as

reconstruction via deconvolution and denote it by RD.

REMARK (2.1): We note that for RP with m = r and RD with m = r — 1 the
coefficient e(z) of A" in the reconstruction error (1.9a) is discontinuous at points
where there is a change of orientation in the stencil of the associated interpolation;
this may happen at critical points of the function and its derivatives. Hence the
resulting schemes (1.14) are “r-th order accurate” (see Remark (1.4)). On the other
hand RD with m = r yield () which is globally Lipschitz rontinuous. thus resulting
in schemes that are r-th order accurate in a pointwise sense. This follows from the

fact that (3.17a) is upgraded to
(3.23) Dy, = Ka'Y(z) + O(h™+)

which has the effect of pushing the non-smoothness due to change of stencil orien-

tation in the associated interpolation to the O(h"*1) level.
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REMARK (3.2): We note that both RD with r = 2, m=1and RP with r = 2 are
piecewise linear reconstructions of the form (1.12). The slope s, for RD is identical
to that of the “2nd-order accurate” TVD scheme in [5]. The slope for RP is the
same as that of RD except at local extrema; where s; = 0 for RD while for RP

(3.24) s = { W(z;, Zj41] if lw[’:j’.sz” < w(z;_1, 7|
w(z;_y,z,] otherwise.

Although RP does not “chop” local extrema as RD, the lack of smoothness in

(3.24) results in the same loss of accuracy at local extrema.

We note that RD with m = r = 2 is essentially the came reconstruction that

gives the non-oscillatory second order accurate scheme of [15].
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4. Scalar conservation laws. The abstract form of our scheme calls in
(1.14b) for the evaluation of the exact solution in the small of the IVP (1.1) with
the initial data R(z;v"). This step is followed by the cell-averaging operation in
(1.14c) which results in the conservation form (1.18). Thus we are spared the task

of having to compute a global solution. All we need to do is evaluate

(4.1) fres = %/0 f(vn(z54 5,80 +n))dn.

To simplify our notation let us denote va(z,tn +t) by v(z,t). Thus v(z,t) is

‘the solution of
(4.2a) ve+ f(v), =0

with the piecewise-polynomial initial data

r—1
(4.2b) v(z,0) = R(z;v") = E bja(z —z;) ! for T4 SZ2< 2T
{=0

in the time strip —00o < z < 00, 0< ¢t < 7, 7 small.

The solution v(z,t), for sufficiently small 7, is composed of sections of smooth-
ness seperated by “fans” that emerge from the discontinuities at {z,~+é}. We use
here the term “fan” loosely, allowing a “fan” with zero spread which is just a curve.
In the'linear case discontinuities propagate along characteristic curves; in this case
all the “fans” are just curves. In the nonlinear case the “fans™ with zero spread are
shock curves, while “fans” with positive spread are rarefaction fans - or possibly a
succession of rarefaction fans seperated by contact shocks in the case of non-convex
flux. We denote by v,(z,¢) the section of smoothness of v(z,t) that is connected to
the polynomial data in (IJ-_g, "'j+g)-

A global description of v(z,t) can be quite complicated. Fortunately all we need

is v(zj,(g,t) for small ¢, which can be easily described in terms of vi(z,t), v;4(z,t)

and the “fan” eminating from z = Zjys at t =0 as followe' If for t > 0 the “fan”
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stays to the right of z = Tiy) then v(x:,-_,,%,t) = u_,-(zj+%,t); if this “fan” stays to
the left of z==z; 1 then v(z;;1,t) = vjpa(z;1,t); if the “fan” covers z =1z .,
then v(z; . 4,t) = constant = V(0;v;(z,44,0),v544(2;441,0)). Here V(z/tiur,ugr)

denotes the self-similar solution of the Riemann problem

u; <0

(4.3) us + f(u): =0, u(z,0) = {uR >0

with constant uy and ugr. We note that the “fan” covers z =z, L only when it contains

]
a sonic centered rarefaction wave (i.e. one that includes a point for which f’ = 0); this
wave retains its self-similar form as long as it does not interact with shocks. Therefore if

we choose 7 sufficiently small so that no shock crosses z = z; +1 for 0 <t < r, we can

express f(v(xj_,,%,t)) by

(4.4)
flvi(z44,t) “fan” stays to the right of z =z, 1
fo(z44,8) = { FR(vi(2j14,0),541(2;4.4.0))  “fan” covers z =z,,4.
flvipa(zi411) “fan” stays to the left of z =z, |

Here fR denotes the dux at z == O of the solution to the Riemann problem (4.3),

(4.5) FR(ur,u2) = F(V(0;u1,u2));

using the foviula in [23] it can be expressed by

min, ..., flu)  ifuy <ug
(4.6a) fRuy,ug) =
ma.x“z_z_zf(u) if uy > us.
When f(u) is a convex function of u, i.e. f"”(u) > 0, f(u) may have only a single

local extremum which is a minimum; let us denote its location by u,. Using this

fact in (4.6a) we can express fF{u;,u,) in the convex case by
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flur)  ifu, <y <uy

flus) ifu <uy <ug
(46b) fR(ul,ug) = { f(ug) if U, S Uz < U,

f(u1) if u; > uy; and a(uy,uz) >0

f(u2) if uy > uy and d(uy,uz) <O0.
Here
(4.7) a(ur,u2) = [f(uz) — fu1)}/(uz - uy)

is the speed of the shock with uy = u; and up = u, in (4.3). We remark that
(4.4) is deliberately formulated in terms of f(v(z; 1,t)) rather than v(z;41,t) in
order to remove ambiguity in the definition when v is discontinuous at Ziva- The
continuity of f(v) in this case follows from the Rankine-Hugoniot relation for a

stationary shock.

We turn now to derive a simple but adequate approximation to the numerical

flux (4.1), which is

(4.8) fj+§ = ;1;/0 f(v(zj+§,t))dt

with the integrand given by (4.4). Note that the integrand is a smooth function of
t.

The first step is to discretize the integral in (4.8) by using a numerical quadra-

ture
1 /" a
(4.9) > [ ot =3 ax gfgir) + 01
0 k=0
thus
K
(4.10) fiov = anf(u(z,,  Bur)).

k=0
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The second step is to approximate v;(z,t) in (4.4) by its Taylor expansion

which is obtained by the following local Cauchy-Kowalewski procedure. We start

by expressing 9'v(z,0)/dz' at z, by

(4.11a)

a'v(zj,O) _ bji for0<i<r-1
gzt

0 fori>r.

Next we use (4.11a) to evaluate

Ay

(4.11b) W(zj, 0) forallland0< k<

by taking derivatives of the partial differential equation (1.1a) in the following

ordered way

(Y =—flvg
Uzt = —[f"(”z)z + .f'vzz]
vee  ~[f"vev, + [z
(4.11¢) J Vezt = —(f"(v2)® + 3f"v v, + ['Vz22]
Uate = =[["(v2) vk + f"(202020 + vvz2) + U]
veee = —[f"(ve) vz + f"(2uvg + Vrtee) + [0
etc.

and then compute (4.11b) by successively evaluating the RHS of (4.11¢); note that

this procedure always uses known values which are either initially given by (4.11a)

or previously computed in the algorithm (4.11c). We observe tuat

. v,(z,t) = .
(4.123) % (z1) 3R+ K (k)
(=0 k=0
satisfies
(4.12b) ¥,(2.0) = v,(z,0) = v(z,0) for T-4 <7<z,
and that
(4.12¢) v,(z,t) = v,(z,t) + O(R"),

l Z 6‘”(31‘:0) (z - z))k t-k
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wherever v;(z,t) is well defined.

The last step in our derivation of the numerical flux is to approximate

f(v(x]-+§,t)) in (4-4) by
(413) f(U(IJ-+ i t)) ~ fR({’J'('T’j+ i t)) 61‘4-1 (171'+é, t)))
where f® is (4.5) - (4.6). The resulting numerical scheme is

(4.142) it = o} = Mfies - fi-s)

K
(4.14b) Z kfR(vg J+lu@;¢ ) aj+l(zj+§;ﬁkr))‘

In the following we show that the numerical flux fJ-+% in (4.14b) is an adequate

approximation to the “abstract numerical flux” (4.1).

We start by proving that the scheme (4.14) is r-th order accurate in the sense

of (1.8). To do s0 we take in (4.14) v} = 4(z;,t,) where u(z,t) is a smooth (either

globally or locally) solution of (1.1) and show that

(4.15)

-ilv—‘

=1 [ fu(eata +m)itn + O(H)
J0

When we apply the reconstruction R to 4" we get from (3.9) and (3.20) that
d* ok

TR R(z8Y) = Sou(z,ta) + O(K %) foro<k<r-1.

(4.16a) 3%

Consequently it follows from the Cauchy-Kowalewski procedure (4.11) - (4.12) and
r = O(h) that

(4.16b) t].(z:}+%,t):u(z}+%,tn+t)+0(h,") fori=7j,7+1 }

f®(uy,uz) is Lipschitz-continuous with respect to u, and u,, and it is consistent

with f(u) in the sense that f®(u,u) = f(u); therefore

(4.16¢) fR(ur,uz) = f(u) + O(Ju = wy| + ju = ug),




Applying (4.16c) to (4.16b) we get that
(416d)  FRG(550400, Gaa(2,0 408) = f(u(,4 1, ta + 1)) + O(KT).

Finally using the assumed smoothness of u(z,t) and the order of accuracy of the
numerical quadrature (4.9) we obtain (4.15).

Next we consider the constant coefficient case
(4.17a) U + avy = 0, a = constant.

Here the “fan” in (4.4) is the characteristic line

(4.17b) Z,44(t) = Zj,y t+at
and
(4.17¢) v;(z,t) = v(z - at,0) = R(z - at; v") for z;_ g(t) <z <z5,().

Since v;(z,t) in (4.17¢) is a polynomial of degree r — 1 in (z ~ at) we get that

3ty

(4.17d) W?

=0forl>r;
this implies in (4.11) - (4.12) that

(4.18a) Uy(z,t) =

Hence

(4.18b) fR(5, (2,4 10 8), Upei(Zy440)) = flu(z,,4,0).

Since the numerical quadrature (4.9) is exact for polynomials of degree r - 1 we get

that the numerical flux f,-_.,% (4.14b) is identical to (4.8). It follows then that the
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numerical scheme (4.14) in the constant coefficient case is the “abstract scheme”

(1.14), (1.16), i.e.

(4.18¢) vt = R(z; - ar;v").

We observe that since the “fans” in the solution v(z,t) in the constant coeffi-
cient case have zero spread, the evaluation of f(v(xﬁ_%,t)) in (4.4) involves only the
smooth parts of the solution v4(z,t). The “fans” in the numerical approximation
mark the domain of validity of the Taylor expansions v,(z,t). Therefore the only
role of the Riemann solver in the formulation of the numerical flux (4.14b)

v(z, 1,t ifa>0
(@19 S 0% G = {ﬁ((x :,)t)) fazo
is to serve as a pointer, i.e. to identify whether z = Tisd falls into the domain of
validity of v; or into that of v,,,. Since 6,-(zj+§,t) = v(zH% -- at,0), the use of
the Cauchy-Kowalewski procedure is equivalent to that of a characteristic method
that traces the characteristic curve through (zHé,t) te the initial data.

Next we consider the scalar IVP (1.1) with coavex f(u) and smooth initial data
uo(z) and we show that the above interpretation of the numerical approximations
applies to this nonlinear case as well. The numerical solution v} = iz, ta) typi-
cally forms a monotone transition of 1 - 2 points across shocks and stays close to
i(z,,tn) in the smooth parts of the solution. (see the numerical experiments with
u¢ + uu, = 0 and u(z,0) = sinmz in section 7). Let us now examine the discon-
tinuities of R(z;v"™) at {r”%} and the nature of the “fans” eminating from these
points. Relation (4.16b) with t = 0 shows that the jump at 4 in the smooth part
of the solutiou is of the order of the local error, say O(h?) with 0 < p < r. Hence
the “fan” emerging from ZTyed in a region of smoothness is either a shock curve or

a rarefaction fan with O(A?) spread. On the other hand in the vicinity of shocks of

u(z,t,) the size of this jump is 0(1); however the “fan” is necessarily a shock curve.
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We see therefore that the global picture is very similar to that of the constant co-
efficient case, i.e. the “fans” separating {v;(z,t)} are either shock curves with zero
spread cr rarefaction fans with O(h?) spread (these can be thought of as “blurred”
characteristic curves); these “fans” are the boundaries of the domains of validity of
the Taylor expansions #,(z,t). We note that the value given by 5((IJ'+§,t) differs

by O(7") from that obtained by solving the nonlinear characteristc relation for v
(4.20) v= R(:cj+% - a(v)t; ™).

Hence the use of the local Cauchy-Kowalewski procedure is again computationally
equivalent to tracing the characteristic curve through (zJ-+§,t) to the initial data.
Since the evaluation of f(v(z”%,t)) in (4.4) essentially involves only 173-(1:J.+§,t)
and 17,-+1(2:J-+§,t), the role of the Riemann solver in the numerical flux (4.14b)
is again that of a pointer, i.e. to identify to which domain of validity z = Tyt i
belongs to. This suggests that f® in (4.14b) can be adequately replaced by the

simpler expression fROF which corresponds to Roe’s approximate solution of the

Riemann problem (see [25], [14]):

i 02) = 51f (1) + f(ua) = la(ur, ) (2 — )

(4.21)

where a(u,, uz) is defined by (4.7). Observe that fROE ip (4.21) satisfies (4.16¢)
and therefore the modified scheme remains r-th order accurate.

The heuristic analysis presented above is applicable only when all the discon-
tinuities in the solution to the IVP (1.1) are shocks; discontinuities that are not
shocks may be present in the solution either by being introduced through the ini-
tial data uo(z) or as a result of a shock-snock interaction in the non-convex case.

Clearly fROF in its form (4.21a) should not be used when the solution contains

P N
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wave since it admits any discontinuity with a(ur,ur) = 0 as

a sonic rarefaction
m is well known and there are ma

2 stationary solution. This proble ny ways to

5 overcome it (see {13], (26}, 9] and Section 7).

In Section 7 we present pumerical experiments testing the
ann IVP (4.3) where f (u) is non-convex

n others not reported here,

performance of the

scheme (4.14) in the solution of the Riem

) =0. Inall these experiments, as well as i

and a(ur,Ur
p the correct structure of the solution.

we have found the scheme to develo
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5. Systems of conservation laws. In this section we extend the reconstruc-
tion algorithm of Section 3 and the solution-in-the-small procedure of Section 4 to
the case of hyperbolic systems of conservation laws.

As always we are interested oanly in “computable” solutions and therefore as-
sume that the initial data uo(z) in (1.1b) are such that u(z,t), which is a vector
function of m components u = (uy,..., 4,)7, is a piecewise smooth function of z
with a finite number of discontinuities. Given cell-averages @} = @(z;,t,), it seems
natural from the point of view of approximation iheory to reconstruct u(z,t,) by

applying the scalar reconstruction R to each of the scalar component 4%, i.e.

(5.1) R{z;@") = (R(z; 8}), ..., R(z; 27.))";

m

here R denotes vector-reconstruction. However, componentwise reconstruction
seems natural only if we disregard the time-dependence of u(z,t) which allows
discontinuities in the solution to collide with each other.

We recall that the scalar reconstruction is non osciilatory only if discontinuities
are seperated by at least r+ 1 points of smoothness, where r is the order of accuracy.
Consequently the component-by-component reconstruction (5.1) may cease to be
non-oscillatory around the discrete set of points (z.,t.) where discontinuities of
u(z, t) interact. In the following we describe an algorithm to reconstruct u(z,t,)
from 4™ which avoids this difficulty by decomposing 4" into m locally defined scalar
characteristic variables.

We start by examining the constant coefficient case f(u) = Au, where A is a

constant m X m matrix

(523') U + Au, =0

(5.2b) u(z,0) = up(z).
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We note that the eigenvalues {ax} as well as the eigenvectors {re}, {lc} are

also constant. We assume that

(5.3a) a1 < a3 < < ay

(5.3b) liry = 6;;.

We define the k-th characteristic variable w* by
(5.4a) w* = lu.
It follows then from (5.3b) that

(5.4b) u = Z wkrg.
k=1

Multiplying (5.2) from the left by I we see that w*(z, t) satisfies the following

scalar IVP
(5.5a) (w*), + ar(w*); =0
(5.5b) w*(z,0) = leuo(z) = wk(z),

the solution to which is
(5.5¢) w*(z,t) = wh(z - akt).
o Using (5.4b) and {5.5c) we can express the solution u(z,t) of the constant coefficient
IVP (5.2) by
u(z,t) = z wk(z - agt)ry.
Let us now consider the following initial data in (5.2b)

ur <z
(5.6a) uo(z) = { up rp <z<z2p.

up Ip "
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First let us consider the case £, = zp = 0 which is the Riemann IVP (4.3). The

solution u(z,t) is a self-similar solution V (z/t;ur,ur) of the following form

[ ur, z/t<a
(5.6b) u(z,t) = V(z/tiup,up) = § ¥* e <z/t<ak4r, 1<k<m-—1,
1 up am < z/t

where

(5.6¢) u —uL+Z -er,, 1<k<m-~-1.

=1
In the case zp > zr in (5.6a) the solution u(z,t), for ¢ small, is

(V(5245up,um) for z <zp +amt

(5.6d) u(z,t) = { um for zp + amt < z < zg + a,t.

V(EER uy, up) forzp+a;t<z

As t increases, the discontinuity in the k-th characteristic field originating at z =
z; will eventually collide with any discontinuity in the {-th field, | =1, k=1
originati'ng at z = zp.

The example (5.6) demon.trates the difficulty encountered in using the com-
ponentwise reconstruction (5.1). We may get oscillations for small ¢ in both (5.6b)
and (5.6d) since tne discontinuities are too close due to the self-similar nature cf
the solution to the Riemann problem. Later on we may get more oscillations in
(5.6d) as discontinuities collide.

We observe that there are no such problems with w*(z,t) = wf(z — axt).
Therefore it makes sense to use the scalar reconstruction R(z; w*) to define

(5.7a) R(z;a) = z"‘: R(z; w*

k

—

where

(5.7b)
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We generalize (5.7) to the nonlinear system case by using locally defined char-

acterictic variables. To reconstruct u from % in (:z:j_é, Ij+§) we define

2

m

(5.8a) Z R(z; ©*(a;))re(8;) for z;_y Lz <5
k=1

where the mesh function @*(g;) = {@¥(&,)} is defined by

(5.8b) o () = be(8,)8 forj—p<i<j+p;

here p is the desired order of reconstruction.

In Section 7 we present calculations for the Euler equations of gas dynamics
with the initial data (5.6a). The results of these calculations (as well as those of
shocks reflecting from a wall) demonstrate that the reconstruction (5.8) works well
also in the nonlinear case.

We turn now to describe our scheme in the case of hyperbolic systems of con-

servation laws. This scheme is identical in form to (4.14):

(5.99) v =0l = A(Jpay ~ i)
K

(5.9b) ff'*"zl = Z akfR(aj(Ij+%yﬁkT)a 17]-+1(IJ-+ évﬁkr))-
k=0

The derivation of (5.9), although different in some details, is basically the same as
the one presented in Section 4 for the scalar case. Rather than repeating ourselves
we shall use the formulae of Section 4 (which are to be interpreted here in a vector
sense), and point out the differences whenever they do exist.

The problem o be solved in the “solution-in-the-small” step of the algorithm
(1.14b) is as before (4.2). The general structure of the solution v(z,t) is similar
to that of the scalar case, i.e. it is compcsed of sections of smoothness seperated
by “fans” eminating from the discontinuities at {z,,1}. As in the scalar case
we can use a local Cauchy-Kowalewski procedure ‘o approximate v;(z,t), the sec-

tion of smoothness of v(z,t) that is connected to the polynomial initial data in

e e ot e ¢
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(2j-1:%544), by 9(z,t) in (4.12) to any desired order of accuracy. Since f(u) is
now a vector, f*{(u) is a matrix, f”{u) is a tensor and so on; consequently (4.11c)
has to be replaced by a much more complicated expression. Rather than doing
this we shall present in Section 6 an algorithm to carry out the Cauchy-Kowalewski
procedure ip the specific case of the Euler equations for gas dynamics.

Next we consider the “fan” that eminates from the discontinuity at Tiva- As
in the scalar case this “fan” starts at ¢t = 0 as a self-similar solution to the Riemann
problem (4.3), which in the system case is a packet of m fans corresponding to the
different characteristic fields. A major difference from the scalar case is that (except
when the initial data in (4.2b) are piecewise constant) the “fan” emerging from Tisd
at ¢ = 0 immediately loses its self-similar nature. Therefore it is no longer possible
to express v(z,, 1,t) in a simple closed form as we did in (4.4). However v(z;,4,1)
can be expressed to any desired order of accuracy via a local Taylor expansion of
the various curves in the “fan” and the states in between (We refer the interested
reader to [1] where Ben-Artzi and Falcowitz describe suck an expansion for the Euler
equations of gas dynamics). Thus as in the scalar case, although at a considerably
more effort, it is possible to obtain an explicit expression that approximates the
“abstract numerical flux” (4.8) to any desired order of accuracy.

We turn now to show that the numerical scheme (5.9) is an adequate approxi-
mation to the “abstract scheme” (1.16). First we observe that relations (4..6) hold
also for the system case; therefore (4.15) follows in exactly the same way as in the
scalar case and consequently the scheme (5.9) is likewise r-th order accurate.

Next we consider the scheme in the constant coefficient case (5.2). Since both
the PDE (1.1a) and the scheme (5.9) decouple into m scalar relaticns for the char-
acteristic variables w* in (5.4a), we can apply the analysis of the scalar constant co-

efficient case to systems in a characteristic-wise fashion. It follows then from (4.17)

- (1.18) that the numerical flux (5.9b) is exact and that the numerical scheme (5.9)
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is identical to the “abstract scheme” (1.16). Let us examine now the structure of
the solution v(z,t) : The “fan” eminating from z;, 1 bas the same form as (5.6b)
except that uz, u¥ and up are now functions of z and ¢. The section of smoothness
Z 1 +amt <z <z 4 +at 1s also the domain of validity of the Taylor expansion
v,;(z,t). We note however that lx v;(z,t), which is the Taylor expansion of w;?(z, t),
is valid in the larger domain T,y + art < z < Tiat axt. Next let us examine

the role of /® in formulating the numerical flux (5.9b):

(5103‘) fR(aJ'(zj-p%)t)’ t.}1.4-1(1:_]'4-%’ t)) = Z((lk)+[lk 6j(£j+%it)]rk

.
+ Z(ak)_[lk Vir1 (244, 8)]rs
k
where
(5.10Db) (ax)* = max(0,ax), (ax)” = min(0,ax).

We see from (5.10) that as in the scalar case the role of f® is that of a pointer,
i.e. to identify for each characteristic variable w* = lxv to which domain of validity
of {lx ¥;} does z = il belong to. Since I z'),'(zj-+§,t) = lkv(x”% — axt,0), the
use of the Cauchy-Kowalewski procedure in this fashion is again computationally
equivalent to that of a characteristic method.

ln the following we argue that except for the discrete set {(z.,t.)} of interac-
tions, the above interpretation can be applied to the nonlinear case as well. Unlike
the scalar case we do not consider in this paper the “non-convex case” for systems
and assume that each characteristic field is either genuinely nonlinear or linearly de-
generate (see [19]). When we consider the IVP (4.2) in the context of the numerical
scheme where v(z,0) = R(z;v"™) we see that the “fans” in the solution v(z,t) are
related to the global structure of u(z, t,) in the following way (see figure 14 and fig-
ure 16): When u(z.t,) is smooth, the “fan” has the basic structure of the constart

coefficient case linearized around U(I‘H,é,tn), except that the k-waves may have a

;
b




spread of O(h?). When z; 4 is in the vicinity of a shock of u(z,t,), the “fan” is
essentially a shock wave with small perturbations in the other fields. We see that
typically (excluding interactions) the “fan” eminating from z,, s in the solution
v(z,t) is degenerate in the sense that except possibly for a single large shock (or a
contact-discontinuity) all the waves in it are weak. This heuristic analysis suggests
that f(v(z, +%,t)) can be adequately approximated by a local Roe’s linearization;
this linearization is exact for a single shock or a contact-discontinuity and amounts
to a characteristic approximation for weak waves.

As in the scalar case, fRCF is obtained by a local linearization with respect to

a particular average i = @(ur,ug) for which

(5.11a) f(ur) = f(sr) = A(8){ur — uL).

fROE ig defined as the flux at z = O of the solution to the constant coefficient

Riemann IVP:

up + A(4)uz, =0

u <0
u(z,O):{u; z>0

which can be expressed as

(5.11b)  fROB(up up) = - [f(ur) + f(ur) Z (ur,ur)lak()ire(d,)]

where
(5.11¢) bk(ur,ur) = (@) (ur — uL);

here ax(%), lk(i) and re(i) are evaluated with respect to the Jacobian matrix A(4 )-
The derivation of Roe’s Riemann solver is well documented in the literature (see
(25], 8], (9], [14]). In Section 6 we describe fROE for the Euler equations of gas

dynamics
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- Finally let us examine the performance of the scheme (5.9) dvring an inter-
action of discontinuities in the soluiion u(z,t) of the IVP (1.1). We observe that
it takes some time until the outcoming waves can be properly described on the
computational g'rid; Till then R(z;v™), which is based on polynomial interpolation,
can only be a crude approximation to u(z,t,). Under these circumstances we ex-
pect the “fans” in the solution v(z,t) (4.12) that originate from discontinuities in
the interaction zone of u(z,t,), to be adequately approximated by the self-similar
solution to the local Riemann problem. We note that once the outcoming waves
are properly resolved on the computational grid, the previous analysis applies.

In Section 7 we present numerical experiments where the scheme (5.9) with
fR replaced by fROE (5.11) is applied to an interaction problem for the Euler
equations of polytropic gas. In all these experiments the scheme (5.9) has developed
the correct structure of the solution.

We remark that the scheme (5.9) with fROF in its form (5.11b) admits a
stationary “expansion shock” as its steady solution. This can be easily rectified

by adding entropy viscosity terms for the genuinely nonlinear characteristic fields.

(See [13], (14], [9]).
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6. Euler equations of gas dynamics. In this section we describe how to

apply the scheme (5.1) to the Euler equations of gas dynamics for a polytropic gas:

(6.1a) u + f(u)z =0
(6.1b) u=(p,mET
(6.1¢) f(u) = qu + (0, P,gP)"
(6.14) P = (1~ )(E - 5p0")

Here p, q, P and E are the density, velocity, pressure and total energy, respectively;
m = pq is the momentum and 7 is the ratio of specific heats.

The eigenvalues of the Jacobian matrix A(u) = 3f/9u are
(6.2a) a(w)=q-c¢ az(u)=g as(u) =q+c

where ¢ = (’1P/p)é is the sound speed.

The corresponding right-eigenvectors are

1 1 1
(6.2b) ”1(“)=(Q-C),T'z(u)=( q ),ra(u)=(4+c);
H —qc Tk H +qc

here
(6.2¢c) H:(E;P)/p:c?/(at_, 1)+%q2

is the enthalpy.
To compute {{x(u)} which is bi-orthonormal to {rx(u)} in (6.2b), we first form

the matrix T(u), the colurans of which are the right-eigenvectors in (6.2b)

T(u) = (ri(u), ra(u), ra(u))




and then define lx(u) to be the k-th row in T~!(u), the inverse of T(u). We get

L(w) = 4002 + a/c, —big - 1/c, by)
(62d) 12(1‘) : ( - bQ,bIQ) -bl)
13(") = %(bZ - Q/C) —'blq + l/cv bl)

where

(6.2¢) by = (y—1)/c?

(6.20) by = %q%l.

Given {v}}, approximation to {&(z,,t,)}, we use (6.2d) - {6.2f) to evaluate

the locally defined characteristic variables (5.8b)
(6.3a) “(vh i iort=j3-r..,j+rand k=1,23.

Next we apply cur scalar reconstruction algorithm to each of the locally defined
characteristic variables in (6.3a). The scalar reconstruction R(z; w) is described 1n
an algorithmic form in an appendix; the output of this algorithm is in the form of
the finite Taylor series in (4.2b). Thus we get for each characteristic variable in

(I)‘—Q’I)#%)

(6.3b) R(z Zb (z - z,)! /1

Rearranging terms we can express the vector reconstruction (5.8a) by

r—1

(6.3c) R(z;v") = Zf; i(z - z,)' /0

=0

where

3
(6.3d) byi = ) b5 r.
k=1

Note that wherever the solution is smooth
al

(6.3e) b1 = 340

(pm, EYT| _ +O(A"')  foro<i<r-—1.

I:I’
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We turn now to describe the Cauchy-Kowalewski procedure (4.4) - (4.5) for

the Euler equations of gas dynamics. We start by using the reconstruction output

(6.3c) to define (4.4a), i.e.

-

d'v(z;,0) {b,-', for0<i<r-1

6.42
(6.42) az! 0 for{>r.

We find it convenient to express 8'v(z;,0)/3z%3t'~* in terms of derivatives of
the 4-vector Z = (p, m, P,q)T. For this purpose we use (6.4a) and the relations
m = 0q

P =(y-1)(E - 5qm)

to find the z-derivatives of ¢ and P, by

Mz =qpz + pqz = 9z = (M — qpz)/p
(6.4b) X
P, =(y- 1)(E; - E(QZm+qmz)]

(6.4c) {mzz = PQzz + 2029z + P2z = Qzz = (Mzz — QP22 — 2q2p2)/p
Pzz = (7= 1)[Ezz — 3(Mqzz + 2¢:m; + gm,)]

and so on. Having evaluated O‘Z(IJ,O)/az’ for0 <1 < r-1, we proceed to obtain
the rest of the derivatives B‘Z(z:J-,O)/az"at“", 0<I<r—-1 0<%k <Iby
differentiating the PDE’s

(6.5a) pt+m, =0
(6.5b) me+(gm), + P, =0
(6.5¢) P +qP; + YPu, =0

and the algebraic relation

(6.5d) m

I

9s

in the following ordered way:
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Compute Z;(z,,0) from

pt+mz =0
m¢+g.:m+qm,+ P, =0
(6.6a) t 1 I ’ :
P+ qP: +4Pq; =0
Pt + prq = my
compute Z,(z,,0) from
Pzt + Myz =0

(6.6b)

Myt + 29zMz + QM. + MGzz + Prz =0 .
Py, + qP;; +7P(Izz +(1 +'7)q:tPJ: =0
Pzt + PzqQt + peqQz + QPae = My

b

compute Z(z,,0) from

(6.6¢)

Pte + My =0
My + qMye + mqz + Pzt + (q::mt + thz) =0 .
l Pre +qPet + 1Pt + (4 Pz + 1Pigz) = 0 ’

Pqee + 2peqe + qpee = My

compute Z;;¢(z;,0) from

(6.6d)

Przt + Mzzz =0

Mazt + qMzzz + MQzzz + Przz +392Mzz + 3¢z.mz = 0 .
Pret + qPrzz + YPQrzz + (2 + 7)qe Pez + (1 + 29)q2,P, =0’
Pazzt + 2(p2qzt + P2tqz) + QPzxt + P22qe + Prqrz = Myze

compute Z,(z,,0) from

(6.6e)

4

( Pztt + Mz =0
Mzet + QMzzt + MGrze + Prze + 2(qzmype + Mzqre)
+(megzz + qemz:) =0
Prte + qPrzt + 1Pzt + (7 + 1)(92 Pz + 42 Pre| + @t Paz + YPigrz = O

\ PQzet + qPzee + P2qee + @z Pee + 2(P2eqe + Peqse = Migee

]
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compute Zy(z;,0) from

( peee + Mger =0

Myee + QMgee + Mzte + Prre + 2(qemae + MieQse)

(6.6f) {  +(qemet + mzqe) =0 ,
Pue + qParse + YPazte + 192 Pre + 2(qt Pot + YPeqat) + que Pz = 0
Pqeee + @Peee + 3(P1qee + Gt pre) = Mieee

and so on.

We note that one can differentiate the algebraic relation (6.1d) in order to
obtain 8' E(z;,0)/3z*3t!=* in terms of the already evaluated derivatives of P,q and
m, and use the derivatives of the conserved quantities p, m, E' to compute v;(z,t)
n (4.5). However, it is more convenient to evaluate the flux f(u) and fR(uy,uz) in
terms of p,q and P; since 9;(z,t) is smooth and the scheme (5.1) is in conservation
form we do not really have to worry about relation (4.12b). For this reason we use

the first, third and fourth components of 2,~(1:, t)

: \~8'2(z,,0) (z-z,)F #k
(6.7) Zi(z,t) = ZZ azk(;tjl—k) - k.;r,) (I - k)!

to define p,(z,t), I—’J(z, t) and g;(z,t), respectively.
Once we have computed (6.7) we can compute the numerical flux f;+§ in
(5.1b).

An exact fR(uy,up), i
(6.8) fR(uy,u2) = F(V(0; 11, u2))

where V(z/t;u;,u;) is the exact solution of the Riemann problem for the Euler
equations of gas dynamics can be computed through an iterative algorithm. This

algorithm is rather complicated, and we refer the reader to [5], {3 and (28] for its

details.
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To compute fR = fROE in (5.11b) and (5.9b) all we need is to describe the
particular average @(u;,ug) for the Euler equations of gas dynamics (see [25], [9])-

To do so we denote the arithmetic mean of b(u) with respect to u; and uz by
‘ 1

(6.92) (6) = 5[b(s1) + b(us)

and define

65b) 4= (AR, B = (WEHI/VR), €= (1= )\ - 5

here H is the enthalpy (6.2c). Having prescribed g, H and ¢, we have all the

quantities needed to define the eigenvalues and eigenvectors in (6.2).

REMARK (6.1): The importance of using the particular average (6.9) rather than
a simpler one is that when (u;, u2) corresponds to a single shock or a single contact

fROE is

discontinuity in the solution of the Riemann problem V(z/t; uy,u2), then

exact, l.e.

(610) fROE(ul)u'Z) = fR(V(O;uhuﬁ))'
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7. Numerical experiments. In this section we present results of several
computer experiments with the schemes (4.14), (5.9). These schemes will be referred
to as r-th order ENO schemes (or “r-th orde;” when applicable - see Remark (1.2));
ENO stands for Essentially Non-Oscillatory.

The ENO schemes are highly nonlinear and consequently do not easily lend
themselves to rigorous analysis. At present we have completed the analysis of the
non-oscillatory interpolation H,, (3.1) - (3.5) and have acquired a fairly good under-
standing of the reconstruction R(z; w); these reconstruction results can be extended
to 2 single application of the “abstract scher e” (1.10) to piecewise smooth data.
Unfortunately we have not been able as yet to analyse rigorously the crucial question
of accumulation of error. Under these circumstances, computer experiments have
become our main tool of analysis. We have performed a large number of numerical
experiments with initial data ranging from random noise to smooth functions. We
have studied two notions of “stability”: (i) Boundedness of a refinement sequence
h — 0, 7 = O(h) for 0 < t < T. (ii) Boundedness of the numerical solution
as n — oo with fixed h and 7. In all our experiments* we have found the ENO
schemes to be stable under a CFL restriction of 1 and strongly so, in the sense that
they strongly damp high frequency noise - this is probably due to the cell-averaging
step (1.14c).

In [15], the first paper in this series, we have presented numerical results which
compare the second order ENO scheme based on RD with r = 2 to a “second order
accurate” MUSCL-type scheme, which is computationally equivalent to the “second

order” ENO scheme based on RP with r = 2.

4The only exception where we had to reduce the CFL number is for the initial data
of the mesh oscillation function v;’» = (~1)?. This choice of initial data forces the
ENO scheme to become linear; for v} = 8,(—~1)7, where 6, is a positive random

number, the scheme is again stable under a CFL restriction of 1: (see [16] for more
details).



In {16], the second paper in this series, we have presented numerical experiments
that verify our statements about the accuracy and non-oscillatory nature of the
reconstruction R(z;w), and demonstrate the stability of the ENO schemes in the
scalar constant coefficient case for both the pure IVP and the mixed initial-boundary
value problem (IBVP).

In this paper we present a sample of our numerical experiments for the non-
linear scalar case and the Euler equations of gas dynamics in 1D. The purpose
of this presentation is to address the open questions that we could not fully an-
swer by analysis: The accumulation of error, the adequacy of the “solution in the
small” procedure, consistency with entropy inequalities and the effectiveness of the
characteristic-wise reconstruction for systerns. We have performed most of the nu-
merical experiments for r = 1,2,3,4,5,6. Since it is not practical to present six sets
of data for each problem we usually compare r = 2, which is the current state of
the art scheme, to r = 4 which seems to be optimal for smooth solutions. However
presentation of a comprehensive efficiency study is deferred to a future paper.

A. Scalar conservation laws.

Al. Convez f(u) with smooth initial data: In this sub-section we show results

of applying the ENO schemes to

(7.1a) ue + (u?/2)z =0

(7.1b) u(z,0) = a + Bsin(rz + ),

for -1 <z <1, t>0.In these calculations we have used the ENO schemes with

fR replaced by fR”F (4.21) (without any entropy correction).

Let Z(z,t) denote the solution of (7.1a) with Z(z,0) =sinnz,ie. f=1, a=
~ = 0 in (7.1b). The solution Z(z,t) is smooth for 0 < t < 1/m; when t = 1/r a

shock develops at £ = +1, and stays there as a stationary shock for t > 1/7. Some




time after its development, this shock starts interacting with the expansion wave in
—1 < z < 1; this brings about a fast decay of the solution. The “exact” solution
presented in the following is computed in 0 < z < 1 by using Newton-Raphson

iterations to solve the characteristic relation
(7.2) < =sinn(z — ZJt);

< in (-1,0) is obtained from Z in (0,1) by Z(~z,t) = —2(z,t). The general solution
of (7.1) is computed from Z(z,t) in (-1,1) by

(7.3) u(z,t) =a+ BZ(z - at + v, Bt).

In Tables 1 and 2 and figure 1 we present computation of (7.1) witha =1, 8 =
1/2, v =0, ie. u(z,t) = 1+ ;2(z —t, 5t); thus the shock develops at t = 2/x.
The results are presented at ¢ = 0.3 when the solution is still smooth. We divide

(-1,1) into J equal intervals and define
(7.4) ;= -1+(3-1/2)h, h=2/J, 1<j5<J

First we consider the pure IVP for (7.1), i.e. periodic boundary conditions at
z = 1. In Figures 1a and 1b we show the results of the ENO schemes with RD at
t = 0.3; figure 1a shows the second order ENO scheme, while figure 1b shows the
fourth order one. Both calculations were performed with J = 10 and CFL = 0.6.
The continuous line in these figures is the exact solution; the circles represent the
values of R(z,;v"). In Tables 1a and 1b we list the Loo-error and the L, -error at
t = 0.3 of a refinement sequence J = 8, 16, 32, 64, 128 for r = 1, 2, 3, 4, 5 with
CFL = 0.6. Table 1a shows the results of the ENO schemes with RP while Table
1b shows the ones with RD. The value of r. in Tables 1 and 2 is the “computational
order of accuracy” which is calculated by assuming the error to be a constant times

h™; this definition is meaningful only for A sufficiently small.
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In figures 2a and 2b we use the same schemes as in figure 1, but with J = 16,
and show the results at ¢ &~ 2/m (after 17 tirne-steps) which is the time of the
formation of the shock. In figures 3a and 3b we show the reconstruction R(z;v™)
corresponding to the numerical solutions of figure 2. The squares in figures 3a and
3b mark the values of R(z”% +0;v"™). R(z;v"™) is piecewise-linear in figure 3a and
piecewise - cubic in figure 3b.

Next we consider the IBVP for (7.1); since the characteristic speed for (7.3)

with @ =1, f = 3, 7 = 0 is positive, we prescribe
(7.5a) u(—1,t) = g(t);

z = +1 is an outflow boundary and no condition is prescribed there. To be able
to compare with the periodic problem we take ¢(t) in (7.5a) to be the value of the

periodic solution at z = —1, i.e.

(7.5b) o(t) =1+ %2(—1 _, %t).

The point of view that we have taken in treating boundary conditiouns is consistent
with the presentation of the “abstract scheme” (1.10), (1.14) as a sequence of global
operations. Thus in the reconstruction step, as in the pure IVP case, we use the
given cell-averages {v}'}, 1 < j < J, to get R(z;v") for —~1 < z < 1; in presence
of boundaries we restrict the choice of stencil to available information by imposing

the condition
(76) 1 <ie())<J—r for1<k<r

in the algorithm (3.4). Note that we do not use the given boundary data g(t)
(7.5a) in the reconstruction step. The boundary data is incorporated into the
scheme on the PDE level by ¢ nsidering the solution-in-the-small step to be an

[BVP. Obviously the resulting scheme is biased “against the wind” near z = —1;

S
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nevertheless, rumerical experiments in the nonlinear case as well as in the constant
coefficient case (see [16]), indicate that the ENO schemes are stable. We observe
that a similar choice of stencil occurs near discontinuities in the interior of the
computational grid.

In Tables 2a and 2b we repeat the calculations in Table 1 for the IBVP (7.1)
with (7.5). In figures 4a and 4b we show the calculations of the ENO schemes based
on RP with r = 2 and r = 4, respectively, for the IBVP (7.1) with a = 0, B =
1, v = m. Here the boundaries z = *1 are characteristic, and a stationary shock
develops at z =0 at ¢ = 1/m. In these calculations we have treated z = —1 as an
inflow boundary and specified

u(-1,t) = 0;

z

+1 was treated as an outflow boundary. The results show the numerical
solution with J = 16 and CF[, = 0.6 at ¢t = 0.6, a¢ which time the solution has
already started to decay considerably due to the interaction of the shock with the
expansion waves.

(A2). Riemann IVP for non-convez f(u): In this subsection we show results

of applying the ENO schemes to the Riemann IVP

u <0
(7.72) we = f(uw) =0, u(z,0) = { Loz
up z>0
where f{u) is the non-convex function
1
(7.7b) f(u) = ~(u? - 1)(u® - 4).

4

We recall that the main difficulty in justifying the approximation (4..3) is when
the “fan” in (4.4) covers z = T,+4; the same difficulty is encountered in justifying
the use of fRF (4.21) instead of the exact flux of the Riemann problem (4.6).

Therefore we present two cages in which d(ur,up) = 0; in the first case z = ()
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is covered by a centered sonic rarefaction fan, while in the second one there is a
stationary (sonic) shock at z = 0.

In each case we present two sets of experiments. In the first set we use the
ENO schemes with the exact fR which is defined by (4.6a); these results, which
we consider to be rather pleasing, are presented in Figures 5 and 7. In the second
get of experiments we use the ENO sclemes with f R replaced by the following

modification of fRYF in (4.21)
(7.8a) FROE(uy,u2) = %[f(us) + f(ug) — max(|a(u, u)l, €)(u2 — uy )}

The addition of the linear viscosity term —&(ug — uy)/2 for |a| < ¢, is the simplest
but crudest entropy correction of (4.21). We note that € = 0 in (7.8a) corresponds
to (4.21), whilee = 1/A(A=1/h) corresponds to Lax’s first order scheme [18]; since

(7.8a) satisfies relation (4.16c) the modified scheme remains r-th order accurate. In

our calculations we take
(7.8b) e =01/

Analysis presented in [24] shows that using (7.8a) - (7.8b) in the “gecond-order”
TVD scheme of [9] results in a scheme which converges to entropy correct solutions
for convex f(u), provided that X is sufficiently small; numerical experiments in the
convex case |9] and the non-convex case (32] seem to verify this statement even for
CFL number close to 1.

The numerical results of the ENO schemes using (7.8a) - (7.8b) are shown in
Figures 6 and 8. These results show that the ENO schemes converge to entropy
correct solutions; however, the quality of the numerical approximation depends

strongly on the formal order of accuracy of the scheme.
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We remark that an entropy correction to f29F which is more appropriate for

the non-convex case is ol:tained by using in (7.8a) € = ¢(u;, u3) which is defined by

(78C) €= ma.x[O, a(ula u?) —ar, arp — a(uly u2)]

where

(7.8d) ar = min a(u;,v), ap = max a(v,uy);
vE[u,,u,] v€(u;,ug]

see [13]. In this case the modified f2°F becomes computationally equivalent to the
exact fF,

Our purpose in presenting numerical experiments with the crude entropy cor-
rection (7.8b) rather than the more appropriate one (7.8¢) - (7.8d) is to demonstrate
that the importance of the Riemann solver in the formulation of the ENO schemes
is decreasing with increasing order of accuracy. When r = 1 R(z;v") is piecewise-
constant and all the variation of the solution is contained in the discontinuities of
the reconstruction. Consequently the Riemann solver is the only mechanism to
describe time evolution. For r > 1, the smooth polynomial variation in the cell
(which is O(h) in regions of smoothness) is generally larger than the variation in
the discontinuities of the reconstruction (which is O(h") in regions of smoothness)
- see Figures 3, 14 and 16. Therefore the time evolution of the smooth polyno-
mial part, namely the Cauchy-Kowalewski procedure, is in general more important
than the Riemann >lver. The only exception is in the first few time-steps needed

to introduce intermediate states in the solution t» the Riemann IVP (7.7) where

(ur,ug) is not a shock.

In all the calculations presented in this subsection we have used the ENO

schemes with RD and CFL = 08.
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Case: (i): up =2, up = —2.
The exact solution in this case is (see figure 5a)

2 z/t < —0.5281529

(7.9a) u(z.t) = { g(z/t) |zl/t < 0.5281529;

—2  z/t>0.5281529

here g(z/t) is a centered rarefaction wave: g(y) is the solution of
y = f'(9)
in the concave part of f which is |u| < \/575;
g(£0.5281529) = F0.2152504.

In figures 5b, c, d we show the results of the ENO schemes using the exact fR
as defined by (4.6a) for r =1, 2, 4, respectively; in these calculations we used J =
40 in (7.4) and N = 80 time-steps. The exact solution is shown by the continuous
line; the circles mark the values of R(z,-;u”). We observe that the structure of the
solution in shese calculations has developed at the correct rate; this is evident from
the fact that the location of the computed shocks is accurate. In figure Sb we notice
the “dog-leg” which is typical of Godunov’s scheme.

In Figures 6a, b, c we repeat the calculations in Figures 5b, ¢, d but with
f® replaced by fROE (7.8a) - (7.8b). From these figures we see that the scheme
develops the correct structure of the solution, but not at the correct rate. This is
due to the fact that ¢ = 0.1/ represents a fan which is much narrower than the
‘nitial fan in the exact solution. The location of the computed shocks lags behind
the correct location by 8 cells for r = 1, 3 cells for r = 2 and only one cell for
r = 4. To verify that the numerical approximations converge to the entropy correct
solution we refine the mesh by a factor of 2 and repeat the calculations of Figures

6a. b, c with J = 80, N = 160; the results of these calculations are shown in Figures

aay abe




6d, e, {. Since the number of cells by which the computed shocks lags behind the
correct location remains the same, we conclude that the numerical approximations
indeed do converge to the entropy correct solution.

Taking into account the crudeness of the entropy correction (7.8b) we consider
the performance of the 4-th order scheme in figures fic and 6f to be surprisingly
good.

Case (ii): up = -3, up = 3.

The exact solution in this case is (see figure 7a)

-3 T/t < -19.5
g(z/t) -19.5 < z/t < 0;

~§(-z/t) 0<z/t<195
3 195 < z/t

(7.9b) u(z,t) =

here g(y) is the solution of

y = f'(3)

in the convex part of f which is |u| > /5/6. Note that the solution (7.9b) is

discontinuous at z = 0; §(0) = v/2.5.

In Figures 7b, c, d we show the results of the ENO schemes using the exact fE
a8 defined by (4.6a) for r = 1, 2, 4, respectively; in these calculations we used J=
40 in (" 4) and N = 20 time-steps. We observe that the stationary shock at z =0
in these figures is perfectly resolved.

In figures 8a, b, ¢ we repeat the calculations in Figures 7b, ¢, d but with fR
replaced by fRCE (7.8a) - (7.8b). Since the rarefaction fans in this case are not
sonic, the quality of the numerical approximation of the rarefaction wave in figures
8a, b, ¢ is similar to that of the corresponding one in figures 7b, ¢, d. We observe
that the stationary shock at z = O in figures 8a, b, c is somewhat smeared - this
is due to the fact that the Riemann solver corresponding to (7.8b) places a fan of

the size |z/t| < € around z = 0. Nevertheless, if we compare the results of the 4-th




order ENO schemes in the two experiments, we find that the results in figure 8c are
only slightly inferior to those of figure 7d.

B. Euler equations of gas dynamics. In this subsection we present numer-
ical experiments with the ENO schemes for the Euler equations of gas dynamics
for a polytropic gas with v = 1.4 (see section 6). In all these calculations we have
used reconstruction via primitive function (RP) and fR9# (5.11), (6.9) without any
entropy corrections.

(B1). Riemann problems. In figures 9 and 10 we show the results of applying
the ENO schemes with r = 2 and r = 4, respectively, to the Riemann problem

(7.7a) with the initial data

(7'103) (pLaQL)PL) =(110v1); (pR’QRaPR) =(0125y0)010)

In these calculations we have used the characteristic reconstruction (5.8), (6.3) with
100 cells, h = 0.1, CFL = 0.8 and 50 time steps.

In figure 11 we repeat the calculation of the “4-th order” ENO scheme in figure
10 but with component-wise reconstruction (5.1). Ccmparing figure 10 with figure
11 we see that there is some “noise” in the component- wise reconstruction which is
eliminated by using characteristic reconstruction. We note however that the levei
of “noise” in figure 11 may be considered acceptable for practical calculations.

The initial data (7.10a) are those of the Riemann problem proposed by Sod
in {23}, which has become a standard test problem. The solution to this problem
has a monotone decreasing density profile and therefore it does not display certain
difficulties that may arise when the intermediate state has to be “built-up.” In

figures 12-16 we present calculations for the Riemann problem

(7.10b)  (pr,qz, Pr) = (0.445, 0.698, 3.528);(pr,qr, Pr) = (0.5, 0, 0.571)




used by Lax in [18]; see also (7], [9]. All these calculations were performed with 100
cells, A = 0.1, CFL = 0.8 and 85 time-steps using a component-wise reconstruction
(5.11). In figure 12 we show the results of the “4-th order” ENO scheme using
a component-wise reconstruction (5.11). Comparing these results to figure 11 we
see that the component-wise reconstruction here is much “noisier” than in Sod’s
problem. In figures 13 and 15 we show the results of the ENO schemes using
characteristic reconstruction (6.3) for r = 2 and r = 4, respectively; comparing
figure 15 to figure 12 we see that most of the “nojse” in figure 12 is eliminated.

In figures 14 and 16 we show the characteristic reconstruction R(z;v") of the
numerical solution in figures 13 and 15, respectively; R(z;v") is piecewise-linear in

figure 14 (r = 2) and piecewise-cubic in figure 16 (r = 4). The squares in these

figures mark the values of R(:cﬁ% % 0;v™); thus the difference between the two

squares at the same location shows the size of the discontinuity in the reconstruction
there (we recall that the circles in figures 13 and 15 are the values of R(z,;v")).
We see that the discontinuities in the reconstruction of the rarefaction wave are
small enough to be graphically imperceptible. Surprisingly the discontinuities in the
reconstruction of the contact-discontinuity are also rather small. Comparing figure
16 to figure 14 we notice that the size of the discontinuitjes in the reconstruction
for r = 4 is always considerably smaller than that for r = 2. It is interesting to
note that even in the shock region in figure 16 (r = 4), the sum of the jumps in the
reconstruction is only about 35% of the size of the shock, while about 65% of the
shock jump is described by the smooth pelynomial part of the reconstruction.

We remark that because of the self-simijar nature of the solution to the Rje-
mann problem, the rate of convergence of any scheme is inherently limited to first
order (see {27]). Comparing r = 4 with r = 2 in the solution of the above Riemann
problems we notice a slight improvement in the smearing of the contact discontinuity

(we have not used artificial compression in these calculations) and the description
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of the rarefaciion wave. Because of the self-similar nature of the sclution it is better
to compare the performances of two schemes by using z/t as the spacial variable
and to find how many time-steps it takes to get well resolved intermediate states.
Doing so for the problem (7.10b) we find that r = 4 with N = 35 gives about the
same result as r = 2 with N = 70.

(B2). Interaction of blast waves: In this subsection we present numerical ex-

periments with the ENO schemes for the problem of two interacting blast waves:

Uy 0 <z<0l1
(7.11a) u(z,0) = ¢ unp 0.1 <z<09
upR 09 <zl
where
(7.11b)

oo=pm=pr=1, q=qu=4qr =0, P, =10°, Py = 1072, Pr = 10%

the boundaries at z = 0 and z = 1 are solid walls. This problem was suggested
by Woodward and Colella as a test problem; we refer the reader to [31] where a
comprehensive comparison of the performance of various schemes for this problem
is presented.

In our calculations we divided the interval (0,1) into J cells by

(7.12a) z; =() - %)/J 1 =1,.,J,

where z, marks the center of the j-th cell. The boundary conditions of a so.id
wallin z = 0 and z = 1 were treated by reflection, i.e. we defined auxiliary states
v, ..., v, ., for the left wall and v, ,,... V7, for the right wall by

(7.12b) Ph e =Py Q%0 = -4y, pr . =P =1,..,r

(712) P, =Py e = e PRy =Pigan 0= her




We observe that representing the solid wall condition by the above reflection

is very suitable for the characteristic reconstruction: \ 3-wave approaching the

between the waves in the characteristic variables (6.3a) and a situation of not having
enough points of smoothness to choose from is thus avoided.

In figures 17a-17h we show the solution of the “4-th order” ENO scheme at
t = 0.010, 0.016, 0.026, 0.028, 0.030, 0.032, 0.034, 0.038, respectively. We refer
the reader to figure 2 in [31] where a highly accurate solution is displayed and
a detailed description of the various interactions that occur at these instances is
presented. The continuous line in figures 17a-17h, 18 and 19 is the solution of
the “4-th order” ENO scheme with J = 800 in (7.12a). Comparing this solution
to the “exact” solution of Woodward and Colella in [31], we find that it shows
all the important features of the various interactions and thus can be considered a
“converged” solution. (The continuous line representing the solution with J = 800 is
the piecewise-linear interpolation of { R(z;; v™)}; consequently cusps in the solution,
which do appear in R(z;v"™), are chopped in the graphic representation). The circles
in figures 17a-17h show the values of R(z,;v") of the “4-th order” ENO scheme with
J = 400. Comparing the numerical solution for J = 400 to that of J = 800 we
see that the velocity and pressure have already converged, while the density in
figures 17g and 17h still deviates from the “converged” solution. This is due to the
smearing of 3 contact discontinuities which are present in the solution at this time;
the numerical results of Woodward and Colella demonstrate that the addition of
“contact-discontinuity steepeners” improve the density profile cousiderably.

In figure 18 we show the solution of the “4-th order” ENO scheme with J = 200

at the final time t = 0.038; In figure 19 we repeat the calculation in figure 18 for

the “second-order” ENO scheme. Comparing figure 18 and figure 19 we see that

the “4-th order” scheme gives a much better resolution. We rzmark that the resuits
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of the “4-th order” scheme wiih J = 100 (not shown here) are of the same quality
as those of the “second-order” scheme with J = 200.

We note that a parabola interpolating
P(I_l) = 240, P(Zo) = 0.01, P(Zl) = 40

has an interval in which it is negative; the same is true for higher order interpolating
polynomials that pass through these points. A situation of this type occurs in the calcy-
lation of the two interacting blast waves just before the interaction in figure 17d, when
the low pressure region in figure 17¢ s shrinking to 1-2 computational cells. Since high
order interpolating polynomials may produce negative values of pressure and density in
such drastic situations, we have imposed a “positivity condition” on the reconstruction
step of our programs for the Euler equations. To ensure that R(z;v") in the J-th cell

yields density and pressure that are positive, i.e.

(7.13a)
=1 r—1
akP (I — zJ.)k akp (z —_ Ij)k

P; +kz=:1 Ep 2=z, X >0, p, +l§ 32k ez, X > 0 for |z -z, < h/2
we check whether

r-1 r—1

OkP; 1 (h/2)* 30,1 (h/2)*
(7.13b) "Z: ’ dzk l k! < O-SPJ',kZ l Lk I T‘ < 0.8p,.
=1 =1

If condition (7.13b) is not satisfied we reduce the order of the reconstruction locally
at r = z; until positivity is ensured. We observe that the LHS of the inequalities in
(7.13b) is O(A) in smooth regions, hence this positivity condition does not reduce
the asymptotic order of accuracy. Our computer program monitors occurances of
order reduction due to the positivity condition; we have found that the order in
the calculations of the “4-th order” ENO scheme has been reduced during two time

steps before the interaction in figure 16d, and only at the interaction zone itself; we

have not encountered any order reduction in the solution to the Riemanp problems

(7.10).
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C. Variants and extensions.

C1. Characteristic method for the scalar case: In (15] we described an approx-
imation to v(z,t), the solution-in-the-small of (4.2), which is obtained by tracing
approximate characteristics to the initial data. This approximation i(z,t) can be

extended to arbitrary order of accuracy as follows: Let &? 1 denote
2

(7.14a) &?Jré =a(R(z4s =0 v*), R(z,41 +0; "))

where @(uy,uz) 18 defined in (4.7), and let a(z) denote the interpolation of a7 by
2

H,, (3.1) withm=r—1, ie.

(7.14b) a(zj+§) = &;-‘_'_%
(7.14c) a(z) = Hn(z;3"), m=T- 1.

The approximation v(z,t) is obtained by prescribing constancy of the solution

along the approximate characteristic lines

(7.15a) z = To + &(Zo)t

le.

(7.15b) #(zo + a(zo)t,t) = v(z0,0) = R(zo;v"™);
thus

(7.15¢) v(z,t) = R(zo(z,t);v")

where zo(z,t) is the solution of the algebraic equation (7.15a). Let z)(z,t) denote

the solution to (7.15a) for m =1 in (7.14c); if z and ¢ are such that

(7.16a) £, y(t) <z <Ei(0)
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where
(7.16b) 5'+)2.(t) = z"+% +t &:‘_*_%
then
Ti+d —ZT;-3 ~
7.16¢ iz t) =z, +—222I7F (7. (D).
( ) O( ) ) j—-% zj+%(t)'_zj-—é(t) ( 3 %( ))

For m > 1 we obtain z,(z,t) by solving (7.15a) with Newton-Raphson iterations
starting with the initial guess (7.16¢).

Using v(z,t) (7.15c) we define the fol'lowing variant of (4.14):

(7.17a) vi =0 = Mfey - Fi-y)
k
(7.17b) fien =D o fo(z;4 8, Bkt)).
k=0

We have started the development of the ENO schemes with the version (7.17);
later on we have replaced the characteristic method by the Cauchy-Kowalewski
procedure which offers a unified approach in extending the scheme to include forcing
terms and to systems of conservation laws. Our numerical experiments show that
the two versions are computationally equivalent, although the version with the
characteristic method (7.17) seems to be slightly more accurate than (4.14).

We remark that the scheme (7.17), as the scheme (4.14) with fRCF in (4.21a),
also admits any discontinuity with @(ur,ur) = 0 as a stationary soiution. This
can be easily rectified by replacing the “shock curve” i,-+§(t) in (7.16b) by an
appropriate fan.

C2. Semi-discrete formulation and Runge-Kutta methods: The semi-discrete
version of the ENO schemes can be derived either directly frorn (1.4) or by letting

7 — 0 in (4.14), (5.9). It takes the form

(7.18) S ()= L fey (- 0] 2 @ bl

i
i
4,
%

PP
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where
(7.18b) i) = FR(R(z43 — 0;0(t)), R(zj4s +0;0(t)));

here v;(t) is an approximation to @(z,,t);vu(t) = {v;(¢)}; f®(u1,uz) is either the
exact flux (4.5) or fROE (4.21). (5.11).

Considering (7.18) to be a system of ordinary differential equations in ¢ for the
vector v(t) = {v;(t)}, we can solve the problem by using a numerical ODE solver.
In [2] we present two sets of numerical experiments in which we use Runge-Kutta
methods of appropriate order to approximate the solution of (7.18). In the first
set of experiments we apply the scheme to the Riemann problem (7.10a) for r = 1,
2, 3,4,5, 6. In the second set of experiments we apply the scheme with r = 2,4
to a Laval nozzle problem which involves the addition of a forcing term to the
Euler equations (6.1). In these calculations we have used RP, fR9F and CFL =
0.5. Comparing the results of the Riemann problem to those in the present paper
we find them to be of similar quality. The numerical experiments of {2 indicate
that the semi-discrete formrulation (7.18) with Runge-Kutta temporal discretization
does not generate spurious oscillations for CFL < 0.5; however when we increase
the CFL number beyond 0.5 we start getting some oscillations and eventually the
scheme becomes unstable.

The main zdvantage of using the Runge-Kutta temporal discretization is the
ease of its programming; however it seems to be less efficient than the fully discrete
formulation and also requires more storage.

C3. Variable grid and front tracking: In section 3 we have pointed out that the
non-oscillatory interpolation H,, (3.1) - (3.5) and the reconstruction via primitive

function (RP) (3.6) - (3.10) are well defined for non-uniform grids, see appendix.

Since the solution-in-the-small step also does not require uniformity of the grid, we
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may compute new cell-averages v7*! in (1.14c) on any choice of intervals {I7 '}

by

1
+1 .
(719) U? = II;,"+1l [ata Uh(z,tn+1 ——O)da:,
)

here I} = “i-h f,‘H_l) and |If| = 51‘:+1 —62_1. Using the same rationale 2s before,
2 2 3 3

our approximation to (7.19) becomes

(7.202) ot = o = ey — Ty

The pumerical flux 72, , is consistent with f(u) =0, a0
1+3 JT3s

(7.20b) oips = (€51 — &Gey)/

and can be expressed as

k
(7.20c) f;+§ = Z akfR(t"),-(IJ-.,.% + ﬁkfaj+§’ﬂk7)"~’j+1(:j+1} + ﬂkra:‘#—%’ﬁu);o’j-&%)
k=0
where
(7.20d) fR(ul,ug;a) = f(V(a;ul,ug)) — oV(o;uy,u2);

we recall that V (o; up, ug) denotes the value of the solution to the Riemann problem

(4.3) at z/t = 0. Roe’s linearization (5.11) yields the following approximation

. 1
(7.21) fROE(uy,ug50) = E[f(ul) + fuz) = o(uy + u2)
=3 Sk, uz)law (@) — olri()).
k=1
In figure 20 we show the results of the scheme (7.20) with f® approximated

by fROE (7.21) for the Riemann problem (7.10b); the values of {5;-‘“} in this

calculation were chosen by the self-adjusting grid algorithm of [13]. This algorithm

provides an automatic way to place interval end-points E;-'“ at the location of
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significant discontinuities and thus avoid their smearing by the cell-averaging step
(7.19). The calculation in figure 20 was initialized by taking the exact solution of
the Riemann problem at ¢t = 0.5 (at which time there are 4 grid points between
the contact-discontinuity and the shock). The results displayed in figure 20 show
the numerical solution of the scheme with r = 4 after 100 time steps with CFL
— 0.5. These results clearly demonstrate the adaptability of the ENO schemes to
front tracking techniques.

We note that the use of irregular grids disallows the extra order of accuracy
which was gained in (1.18) for a uniform grid. Numerical experiments with irregular
grids (where E;‘“ is randomly selected within a specified interval) show that the
error in solving the scalar smooth problem (7.1) by the scheme (7.20) is O(h""!) in
the L, Lz and Lo norms. However comparing figure 20 with figure 15 we observe a
considerable gain in resolution in spite of the reduction in formal order of accuracy.

C4. Eztension to 2D: In this subsection we outline the extension of the ENO

schemes to the solution of the two-dimensional IVP

(7.22) we + f(u)s +9(uw)y =0,  u(z,9,0) = v(zy).

We note that Strang-type dimensional splitting [29)] is only second-order accurate in
timne, and therefore is unsuitable for extending the higher order accurate members

of the ENO schemes to 2D.

Let 1 denote the two-dimensional “sliding average” of w

1 Azxf2 Ayl2
(7.23 w(z,y) = — / w(z + &,y + n)dnd§.
) ( Asz —~az/2d-AQy/2 ¥

Integrating (7.22) over the computational cell [;; X (tnytnsrly Ly = [zi_%,zH%} X

ly- 4y y”%], we find that ﬁ?j = @(Z,, Y, tn) satisfies the equation

:'l+l =n ; , o a -
Uy, = Uy — /\x(fu, i 7 fl'-— %]) - Ay(gl.j-&g - gl.j—é)

(7.24a)

Py
A 1



where A, =7/Az, A\, =7/Ay and

) Ay/?2

(7.24b) f,'+§,i = TAy/ /sz Tiv ¥ + Nytn + t))dndt,
1 Az/2

(724C) g,;H% = ;—A_T/ 4/_Ax/2 g(u(:z:.- + el yj+§itn + t))dfdt

The abstract form of the ENO schemes for the solution of (7.22) remains (1.10),

l.e.

[l

(7.25) "t = A, E(r)- R(.,;v"), v = d.

As before E(t) is the exact evolution operator of (7.22); however, A, is now the
2-dimensional cell-averaging (7.23) and R(z,y; %) is an appropriate s-dimension.l

reconstruction of w(z, y). In the scalar constant coefficient case
(7.26a) u¢ + aug + by, =0, u(z,y,0) = uo(z,y),

the ENO scheme (7.25) becomes

(7.26b) v = R(zi - an g~ brot), o = do(z4,y5).

1_7 L)

In [12] we present numerical experiments with the ENO scheme (7.26) for
the scalar constant coefficient case, where the reconstruction R(z,y; W) is obtained
via a two-dimensional decounvolution. Expanding w(z + £,y + 1) in (7.23) around

§ =n =0 we get as in (3.12)

(7.27)  0(z,9) = w(z,y) + 02[(A2)wes + (AY) wyy] + aa[(AT)* Warea+

+ Z(AI)Q(Ay)zwrzw + (Ay)4wyyyy] + O(Ae)

Multiplying both sides of (7.27) by (A::)"(Ay)""5;;‘;—;%/—,_—k and truncating the ex-

pansion in the RHS at O(A"), we get as in (3.13) an invertable system of linear
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equations which expresses ¥ and its derviatives in terms of w and its derivatives,

We set
(7.28a) (D°°)i5 = &(z;, y)

and obtain approximations

ak+l

(7.28b) (5“):',' = (Az)k(Ay)l dz*dyl

W(zi ;) + O(A7), 1<k +1<r—1;

then, as in (3.17), we invert the system of linear equations to get the following

approximations to w and its derivatives

gk+1
(7.292) (D*);; = (Az)*(Ay)' - = — FEw w(zi,y;) + 0(A7), 0<k+i<r—1.

Using (7.29a) we define R in the cell I;; by

—

r— {

(7.29b) R(z,y; & =le' (Dk1=k) ( )(f;‘z")k(y—;fl)l_k, (z,9) € I,.
k=0

=0

The approximations D* in (7.28b) are obtained by a sequence of applications
of the one-dimensional operation (3.15b), which we rev.rite now in the following

operator form:

d' d*

(7.30) (G o u), = M(d_z‘Hm(z’ - 05 u,, EH,,,(ZJ- + 0; u));

here u denotes the one-dimensional vector {u(z;)}:_ . Using (7.30) and the notation
1/ y=1

convention , ; = {u(z,,y,)}!_ 1» we define

(7.31a) (D*0); = (Az)*(G o Dej)i, 1<k<r—1,

(7.31b) (D), = (Ay) (Gl edia);,  1<i<ron,
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To obtain approximations to the mixed derivatives of @ we first evaluate
(D¥)ij = (A9)' (Gl o (D*®)ial;,  1SHSTr=1-F,
(ﬁg'l)s‘j = (Az)k[Gk -1 ® (50’1)..;'].', 1<k<r-1-1,

and then define
(7.31¢) (DY) = M((D¥)i, (D5)i),

where M is the min mod function (3.16).

We observe that the restriction of the two-dimensional reconstruction (7.29)
to y = yj, i.e. R(z,y;;w) is identical to the one-dimensional reconstruction (3.18)
applied to the restriction of & to y = y;, i.e. R(z;@(e,y;)); the same observation
applies to the restrictions to z = z;.

We recall that the one-dimensional reconsiruction is essentially non-oscillatory
only if discontinuities are seperated by at least r + 1 points of smoothness. In
the one-dimensional system case we had to overcome the problem of collision (in
time) of discontinuities; in the two-dimensional case we also have to worry about
intersections (in space) of curves of discontinuity. In order to study the severity
of the problem we have experimented with the constant coefficient problem (7.26a)
with the initial data

1 (z,y)€S;

(132 we={y oIy

here U = {—1,1] x [=1,1] and S is a rotated square contained in U. In [12] we
present numerical results which are obtained by applying the scheme {7.26) with
r = 1,2,3,4 to the initial data (7.32) with periodic boundary conditions on dU.
These results show that indeed small spurious oscillations are generated for r > 2

at the corners of S, however it seems to us that they are small enough to be

computationally acceptable.

e My
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Appendix: An algorithm for reconstruction.

In this appendix we describe our algorithm for computing the coefficients bk

in
r—1

(A.1) R(z;w) = Zbik(z—z,-)k,
k=0

where z; is the center of the j-th cell. To obtain these coefficients we start with

Newton’s form of interpolation
r k-1
(A-2) Ho(z;u) = ) ulye, o, visel [] (2 = ).
k=0 =0
Here 1 = 1(;) is selected by the algorithm (3.4) with respect to the divided differences
(A3) di.k = u[yh seey yi+k]

In the following we describe an algorithm to rewrite the polynomial on the

RHS of (A.2) as a finite Taylor series around z = z,:

(A.4) 2‘ di kP x(z Z ¢ (ze)(z - z.)*/k!
where

k-1
(A.5) P k(z) = H (z = yi+1) Z Sik(z —z,)

=0

Using the fact that the coefficients { ;) satisfy a recursion relation we compute

them as follows:

We set

(A.6) 21 =z, - yiyu, 0<I<r-1;
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then we evaluate

dol=1,r
Sii=Sti—11-121-1
A7 ' )
(A7) dok=1l+1r

Stk = Sik—1 + Si—1.6-1Zk-1
It is easy to see that
r
(A.8) g (ze) = k1D Si—kadis
=k

We note that the algorithm (A.6) - (A.8) is defined for a non-uniform grid.

When the grid is uniforn we can obtain (A.8) in two steps: First we take z. = ¥i

and observe that Z; = —lh in (A.6); consequently {Six} are independent of 1.
Denoting
(A.9) dy = h*dix, ek = kg™ (%)

and using the convention di = 0 for k > r, we get for1<r<6

(co= u(yi)
€y = Jl - Jg/z +'(i3/3— d-4/4+d—5/5 - d-e/6

¢q= dp—ds+11dy/12—5d5/6 + 137de /180
(A.10) W ¢ = d3—15dy+1.75ds — 1.875de
ce = dq—2ds +17de/6
cs = ds —2.5de
L Ce = Je

Thus

-

kolk)(g ) = °l z. — g\
(A.11) hkqtk)(z,) ( - )

Reconstruction via primitive function (RP): In this case I; = (y5,¥j+1) 18 the

j-th cell and z. = z; = 1y + yj+1) i8 its center. The given data is

1 Yist
(A.12) o = ——-—-———-/ w(y)dy,
Yi

Yivst — W




from which we evaluate the point values of the primitive function

k-1
(A.13) W(ye) =D (%1 — y)ir.

=0

Applying the algorithm (A.6) - (A.8) to
(A.14) dik = Wlyi, .., Yisk]

with i = i(7) selected by (3.4), we obtain the values of q'Y(z;). Using the definition
(3.8) in (A.4) we get the coefficients of the Taylor expansion in (A.1) by

(A.15) bk = ¢+ (z;) /K

We note that when the grid is uniform yx = zx_,/; and we can also use the
algorithm (A.9) - (A.11).

Reconstruction via deconvolution (RD): We recall that RD is used with a uni-
form grid so that the given data @ can be thought of as point values @(z;) of the

sliding average function (1.3). Applying the algorithm (A.9) - (A.11) to
(A.16) dix = !I)[.‘l:.', veny 1:,'+k]
with z. = z; we get in {A.11) for i = ¢(5 — 1) the values of

d*
(A.17a) hka;; H.(z; - 0;);

when we apply this algorithm with 1 = i(j) and z., = z; we get in (A.11) the values
of

k

A.17b Rk —

H.(z; + 0; w).

Next we evaluate Dy, in (3.15) by taking the min mod of the appropriate values
in (A.17a) and (A.17b). Finally we use the back-substitution (3.19) to obtain the

coefficients of the Taylor expansion (A.1)

1
(A.18) bix = ;—!Dk,,/h“.




We remark that the use of the algorithms (A.9) - (A.11) is preferable to that
of (A.6) - (A.B) since it enables us to save computing time by rearranging the
operations (A.16) - (A.17) as follows: First we set + = i(j) in (A.16) and evaluate
(A.9) - (A.10). Using the same coefficients cx in (A.10) we now apply (A.11) to

. k - k _
% z. = z; and T, = Zj41 tO obtain %; H,(z; + 0;w) and fz—,‘ H,(zj4+1 — 0; @),

respectively; the min mod operation (3.15) is then performed in a following sweep.
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t = 0.032
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