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NUMERICAL METHODS FOR MULTILATTICES∗

ASSYR ABDULLE† , PING LIN‡ , AND ALEXANDER V. SHAPEEV†§

Abstract. Among the efficient numerical methods based on atomistic models, the quasi-
continuum (QC) method has attracted growing interest in recent years. The QC method was first
developed for crystalline materials with Bravais lattice and was later extended to multilattices [Tad-
mor et al., Phys. Rev. B, 59 (1999)]. Another existing numerical approach to modeling multilattices
is homogenization. In the present paper we review the existing numerical methods for multilattices
and propose another concurrent macro-to-micro method in the numerical homogenization framework.
We give a unified mathematical formulation of the new and the existing methods and show their
equivalence. We then consider extensions of the proposed method to time-dependent problems and
to random materials.
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1. Introduction. In some applications of solid mechanics, such as modeling
cracks, structural defects, or nanoelectromechanical systems, the classical continuum
description is not suitable, and one is required to utilize an atomistic description of
materials. However, full atomistic simulations are prohibitively expensive; hence one
needs to coarse-grain the problem. The quasi-continuum (QC) method [42] is one of
the most efficient methods of coarse-graining the atomistic statics. The idea behind
QC is to introduce piecewise affine constraints for the atoms in regions with smooth
deformation and use the Cauchy–Born rule to define the energy of the corresponding
groups of constrained atoms. To formulate the QC method for multilattice crystals
one must account for relative shifts of Bravais lattices of which the multilattice is
comprised [43].

The QC method is a multiscale method capable of coupling atomistic and con-
tinuum descriptions of materials. It is intended to model an atomistic material in a
continuum manner in the regions where the deformation is smooth, and use the fully
atomistic model only in the small neighborhood of defects, thus effectively reducing
the degrees of freedom of the system. Originally, the QC method was developed
for crystalline materials with a (single) Bravais lattice [42], and the convergence of
a few variants of the method has been analyzed under some practical assumptions
(see, e.g., [18, 29, 30, 31, 32, 36, 37, 38]). The QC method is based on the so-called
Cauchy–Born rule (see, e.g., [11, 20, 23, 25]), which states that the energy of a certain
volume of a material can be approximated through the deformation energy density,
which is computed for a representative atom, assuming that the neighboring atoms
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follow a uniform deformation. Later, the QC method was extended to multilattices
[43] (a multilattice is a union of a number of Bravais lattices) based on the improved
Cauchy–Born rule [41], which accounts for relative shifts between the Bravais lattices.
Examples of such materials include diamond cubic Si, HCP metals (stacking two sim-
ple hexagonal lattices with a shift vector) like Zr, ferroelectric materials, salts like
sodium chloride, and intermetallics like NiAl. More recent developments of the QC
method for multilattices also include adaptive choice of representative cells of multi-
lattices [17]. It appears that no rigorous analysis is available so far for the multilattice
QC method except for the authors’ preprint [4].

In the present work we propose a treatment of multilattices within the frame-
work of numerical homogenization. Homogenization techniques for partial differential
equations (PDEs) with multiscale coefficients are known to be successful for obtaining
effective equations with coefficients properly averaged out [10]. Finite element meth-
ods based on homogenization theory have been pioneered by Babŭska [7] and have
attracted growing attention in recent years (see [1, 2, 19, 21, 26] for textbooks or re-
view papers). Following the ideas of [10], we use formal homogenization techniques to
describe the coarse-graining of multilattices and, based on that, propose a macro-to-
micro numerical algorithm which we call the homogenized QC (HQC) method. Here
the term macro-to-micro refers to coupling macroscopic and microscopic scales for
the same physical model, but not coupling models, like in the nonlocal QC. The
macro-to-micro method developed in this paper follows the framework of the finite
element heterogeneous multiscale method (FE-HMM) [1, 2, 19], a numerical method
coupling a macroscopic finite element method (FEM) defined on a macroscopic mesh
with effective data recovered on the fly by microscopic FEM on patches centered at
suitable quadrature points within the macroscopic mesh. This method belongs to the
family of numerical homogenization methods, as it provides a homogenized numerical
solution, but unlike classical methods, the effective data are not precomputed but
supplemented by micro computations when and where needed during the macro com-
putation. The HMM provides an efficient way of coupling micro- and macro solvers
and a suitable framework for a priori and a posteriori analysis, taking into account
numerical approximation at different scales [1, 2].

We give a unified mathematical description and establish equivalence between
the homogenized QC, the multilattice QC (MQC) method of [43], and the FEM ap-
plied to the continuously homogenized equations (see [4, 24] and references therein for
homogenization of atomistic media). Despite the formal equivalence, we find value
in formulating the MQC method within the homogenization framework and, more
generally, in connecting the existing developments in upscaling atomistic models and
classical numerical homogenization. First, this framework allows us to apply the nu-
merical analysis techniques developed for continuum numerical homogenization, such
as the finite element heterogeneous multiscale method [1, 19], to the MQC method
(see our preprint [4] for an example of such application). Second, numerical homog-
enization techniques can be used to upscale the atomistic model in both time and
space, which makes it promising for modeling and especially analyzing motion of at-
omistic materials at macro- and microscale [19, 24, 35]. In this work we demonstrate
such an application of the HQC method to a slow (i.e., with no thermal fluctuation)
dynamics of an atomistic crystal (section 9). Also, numerical techniques based on
the homogenization framework are well suited for materials described on stochastic
lattices at the atomistic level such as polymers [9] and glasses (see, e.g., [6, 12]), or
for materials with properties (such as, e.g., conductivity, stiffness, etc.) described by
random parameters at the continuum level [45]. We give an example of application
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of numerical homogenization to a stochastic material in section 8. We note that the
idea of applying numerical homogenization methods to atomistic media has appeared
in the literature before [9, 13, 15, 16, 24].

The paper is organized as follows. We present the atomistic model in section 2,
and in particular we give a simplified illustrative model in section 2.2. The simplified
model will be useful to better illustrate application of the coarse-graining methods
and to draw analogies between the concepts discussed in this paper and their coun-
terparts in the classical continuum homogenization. We then present the QC method
in section 3. In section 4 we present a formal homogenization technique applied to
the atomistic equations. In section 5 we present the HQC method—a concurrent
macro-to-micro algorithm based on the discrete homogenization. Section 6 is devoted
to showing the equivalence of the following three methods applied to multilattices:
the HQC method, the MQC method, and the FEM applied to continuously homog-
enized equations. In section 7 we illustrate an application of the HQC method to a
multilattice. We emphasize that the HQC method is formulated in such a way that
it allows for a straightforward extension to noncrystalline materials if the microstruc-
ture is known; an example of such extension is given in section 8. In section 9 we
apply the proposed macro-to-micro method to a long-wave unsteady evolution of a
one-dimensional multilattice crystal. Concluding remarks are given in section 10. The
commonly used notations are collected in the appendix.

2. Problem formulation. The focus of the present study is on correct treat-
ment of atomistic materials with spatially oscillating or inhomogeneous local proper-
ties.

2.1. Equations of equilibrium. We describe the formulation of the problem
of finding an equilibrium of an atomistic material in the periodic setting. We consider
the periodic boundary conditions for simplicity, in order to avoid difficulties arising
from presence of the boundary of the atomistic material. Nevertheless, it should be
noted that the numerical method and the algorithm proposed in the present work can
be applied to Dirichlet, Neumann, or other boundary conditions.

2.1.1. Deformation. Consider an atomistic material occupying a region Ω =
[0, 1)d in its reference (i.e., undeformed) configuration and extended periodically out-
side of Ω. The set of positions of atoms in the reference configurations is

M = Ω ∩
m−1⋃
α=0

(
εZd + εpα

)
,

where pα ∈ [0, 1)d is a shift vector of the αth species of atoms in the reference con-
figuration; in total we have m species of atoms. We assume that pα �= pβ for α �= β
and, for convenience, p0 = 0.

We collect these shift vectors into the set P := {pα : α = 0, . . . ,m − 1}. Thus,
if we denote a Bravais lattice in Ω by

L = Ω ∩ εZd,

then we can write M = L+ εP . This identity means that M consists of εP repeated
periodically with the period ε. We will call M a multilattice. The sets L, P , and M
are illustrated in Figure 1.

When the material experiences a deformation, the atom positions become x+u(x),
where u(x) is the displacement. We assume that u(x) is periodic; i.e., u(x+a) = u(x)
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Fig. 1. Illustration of L (left), P (middle), and M (right); here ε = 1/5.

for all a ∈ Z
d. The space of all periodic displacements is denoted by Uper(M). Since

we consider only the systems invariant with respect to translation in space, we will
also need the space of displacements with zero average, U#(M) (see Appendix A.1
for the precise definitions).

2.1.2. Interaction. We assume a general (multibody) finite-range interaction
between atoms. For each atom x ∈ M we introduce its “interaction neighborhood”—
a set of vectors Rε(x) such that {x+ εr : r ∈ Rε(x)} are the atoms that x interacts
with. The energy of an atom x ∈ M is denoted by Vε(DRε(x)u(x);x), where DRεu =
(Dru)r∈Rε (see Appendix A.3) is a collection of discrete directional derivatives of u
corresponding to the set of neighbors Rε (these notations were first introduced in
[28]). The discrete derivative in direction r of u evaluated at x ∈ M is defined as

Dru(x) :=
u(x+εr)−u(x)

ε . The needed properties and definitions of discrete directional
derivatives can be found in Appendix A.2, and more details on discrete directional
derivatives in Appendix A.3.

Thus, the interaction energy of the displacement u is given by the interaction
potential Vε as

E(u) =
1

#(M)

∑
x∈M

Vε(DRε(x)u(x);x) =
〈
Vε(DRεu)

〉
M,

where 〈g〉S denotes the average value of a function g defined on a discrete set S.
The subscript ε in Vε and Rε indicates that these objects depend nonsmoothly on

x: indeed, the interaction energy and the interaction neighborhood may depend on
the species of atoms α for x ∈ L+εpα. For instance, we can consider a Lennard–Jones
potential with atom-dependent parameters:

(2.1) Vε(DRεu;x) =
∑
r∈Rε

sx,x+εr

(
−2
( |r+Dru|
�x,x+εr

)−6
+
( |r+Dru|
�x,x+εr

)−12
)
,

where sx,x+εr and �x,x+εr are, respectively, the strength and the equilibrium distance
of interaction of atoms x and x+ εr.

We assume that the interaction neighborhood Rε(x + εpα) and the interaction
potential Vε(•, x+εpα) for x ∈ L depend only on α, the particular species of atoms, but
do not depend on x; we therefore write Rε(x+εpα) =: Rε,α and Vε(•, x+εpα) =: Vε,α.
This assumption states, effectively, an ε-periodicity of Rε and Vε(•, x). Then, we can
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use the following form of the energy:

E(u) =

〈
1

m

m−1∑
α=0

Vε(DRε(x+εpα)u(x+ εpα);x+ εpα)

〉
x∈L

=

〈
1

m

m−1∑
α=0

Vε,α(DRε,αu(x+ εpα))

〉
x∈L

,(2.2)

where we used a more verbose notation for averaging of a function g defined on a
discrete set S, 〈g〉S =: 〈g(x)〉x∈S . This expression for the energy will be used to write
down the energy of the MQC method in a familiar way (see (3.5)).

Remark 2.1. One can exercise the freedom in choosing P by assuming that
P =

{
0, 1

me1, . . . ,
m−1
m e1

}
, where e1 ∈ R

d is the respective unit vector. In this case
M, up to a dilatation, is a simple lattice (although with several species of atoms).
This allows one to choose Rε(x) independent of x (and also Rε,α independent of α)
and leave only interaction potential Vε to depend on x.

We will not pursue this in the present work; however, such notations would sig-
nificantly simplify presentation of the MQC (section 3.3) and would allow one to
conveniently write the equilibrium equation in a strong form (in particular, in section
4.1). Our motivation for not pursuing this is to show that the homogenization and
the numerical method can, in principle, be generalized to the case when Rε depends
on x. This is important when modeling noncrystalline materials with no underlying
periodic structure.

2.1.3. External force. The potential energy of the external force f = f(x) is

−F (u) = −〈f, u〉M,

where by 〈w, v〉M := 〈w · v〉M we denote a scalar product of w, v ∈ Uper(M). (To be
precise, it is an inner product on U#(M) and a semi-inner product on Uper(M).) The
forces f = f(x) are applied as “dead loads”; i.e., they are independent of actual atom
positions x+ u. For the problem to be well-posed, the sum of all forces per period is
assumed to be zero; i.e., 〈f〉M = 0.

2.1.4. Equation of equilibrium. We denote the total potential energy of the
atomistic system by

Π(u) = E(u)− F (u).

A displacement u ∈ U#(M) is a stable equilibrium if it is a local minimizer of Π,
which implies that u is a critical point of Π:

(2.3) 〈δΠ(u), v〉M :=
d

dt
Π(u + tv)

∣∣
t=0

= 0 ∀v ∈ U#(M).

We assume that the function Π(u) is smooth enough, and hence 〈δΠ(u), v〉M is a linear
functional with respect to v ∈ U#(M), which justifies identification of δΠ(u) with an
element of U#. Alternatively, the problem of finding the equilibrium configuration of
atoms can formally be written as

∂Π

∂u(x)
= 0 ∀x ∈ M
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Fig. 2. Illustration of a simplified atomistic model.

if we consider Π as a function of finite number of variables u(x), x ∈ M.
A physical potential energy Π(u) has to be invariant with respect to a uniform

translation of atoms. Hence, we pose the following additional condition:

(2.4) 〈u〉M = 0,

which is necessary (but may not be sufficient) for the equations (2.3) to have a locally
unique solution.

The equilibrium equations (2.3) together with the additional condition (2.4) can
be written in variational form: find u ∈ Uper(M) such that

〈δE(u), v〉M = F (v) ∀v ∈ Uper(M),(2.5a)

〈u〉M = 0,(2.5b)

where the functional derivative δE : Uper(M) → Uper(M) is computed as

〈δE(u), v〉M =

〈∑
r∈Rε

V ′
ε,r(DRεu), Drv

〉
M

(2.6)

and V ′
ε,r(DRεu) denotes, effectively, the gradient of a scalar function Vε with respect

to its vector-valued variable Dru. (Note the difference with Vε,β introduced in (2.2).)
Here and in what follows, with a slight abuse of notations, we keep the sign of sum-
mation over r ∈ Rε inside the triangular brackets of the scalar product.

2.2. A simple illustrative example. The following simplified model will be
useful in illustrating the concepts presented in this paper (namely, we will give a
simplified version of the QC method, in section 3.4, and illustrate an application of
the homogenization, in section 4.2). The reader can find more examples involving a
simplified model in our preprint [4].

Assume one space dimension, d = 1, the domain Ω = [0, 1), the shift vectors in
the reference configuration

(2.7) P =
{
0, 1

m , . . . ,
(m−1)
m

}
,

the multilattice

M =

m−1⋃
α=0

(εZ+ ε αm ) ∩ Ω = ε
mZ ∩ Ω,

and the basic lattice L = εZ ∩ Ω. We further assume R = { 1
m} (nearest neighbor

interaction only) and consider the “linear spring model” with the atomistic potential

(2.8) Vε(Dru;x) = ψε(x)
(Dru)

2

2 ,

with r = 1
m . Such a system can be interpreted as a system of masses located at

positions x+ u and connected with ideal springs with spring constants kα = ψε(x)/ε
(where α and x are related here through x ∈ ε 1+αm + εZ), as illustrated in Figure 2.
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The equilibrium equation then becomes

(2.9) 〈ψεDru,Drv〉M = 〈f, v〉M.

If we want to find an equilibrium of a very large atomistic system, we need to
coarse-grain these equations. In section 3 we present the QC method, one of the
methods of numerical coarse-graining of such a system.

We can notice that (2.9) closely resembles the continuum equation

(2.10)

∫
Ω

A
(
x
ε

)
du
dx

dv
dxdx =

∫
Ω

fvdx,

for which the homogenization theory is well-developed. Here A
(
x
ε

)
is an oscillating

coefficient defining the local energy density. The crystal is, by definition, a periodic
arrangement of atoms, which translates into periodicity of A

(
x
ε

)
. Noncrystalline solid

materials, in contrast, correspond to random arrangements of atoms, which is analo-
gous to random (nonperiodic) A

(
x
ε

)
. The spring constants varying on the scale of ε

are analogous to A
(
x
ε

)
varying on the scale of ε. It is well known from homogeniza-

tion theory [10] that the solution u of (2.10) converges weakly in the H1 norm to a
homogenized solution ū, solution to an equation similar to (2.10) but with an effective
(homogenized) tensor Ā(x). We note that, in general, strong convergence holds only
for the L2 norm.

Based on this similarity between the continuum and the discrete energy, we apply
the formal homogenization techniques to the discrete atomistic equations in section
4 and based on that formulate the HQC method—a concurrent macro-to-micro algo-
rithm (similar to FE-HMM) based on the discrete homogenization. The method is
formulated in such a way that it allows for a straightforward extension to noncrystal-
line materials if the microstructure is known; an example of such extension is given
in section 8.

In section 9 we apply the proposed macro-to-micro method to a long-wave un-
steady evolution of a one-dimensional multilattice crystal. The long-wave unsteady
evolution is analogous to a continuum motion corresponding to a Hamiltonian

1
2

∫
Ω

[
m
(
x
ε

)(
du
dt

)2
+A

(
x
ε

)(
du
dx

)2]
dx,

where u = u(t, x) is assumed to have no fast (i.e., on the time scale of 1
ε ) oscillations.

3. Quasicontinuum (QC) method. Traditionally, numerical methods such as
the finite element method (FEM) are applied to continuum equations which can then
be solved on a computer. The characteristic feature of the atomistic models we are
discussing in this paper is their discreteness, with a number of degrees of freedom
often too large to keep track of each individual atom. Therefore, similarly to FEM,
the ideas of reducing the number of degrees of freedom are used for atomistic models
as well. The difference is that now the reduction is done from a large but finite number
of degrees of freedom to a smaller number of degrees of freedom. The QC method
is a representative of such methods. We first present its simple-lattice version. The
QC method consists of reducing the number of degrees of freedom of the atomistic
system by choosing a coarse mesh of nodal atoms and assuming that the positions of
the other atoms can be reconstructed by a linear interpolation.

It should be noted that we discuss here only the local version of the QC method,
which is equivalent to applying the FEM to the Cauchy–Born continuum model of
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elasticity. We are not considering coupling the continuum and discrete models in this
paper.

3.1. Notation. Assume a partition Th of the domain Ω into simplicial elements
T , which we will conveniently refer to as the mesh. Normally, #(Th) 	 #(L) (recall
that by #(•) we denote the number of elements in a set). By |T | we denote the
Lebesgue measure of T . The QC solution will be denoted by uh.

The space of piecewise linear discrete vector-functions is denoted by

(3.1) Uhper =
{
uh ∈

(
W 1,∞

per (Ω)
)d

: uh|T ∈ P1(T ) ∀T ∈ Th
}
,

and the space of piecewise constant vector-functions as

Qh
per =

{
qh ∈

(
L∞
per(Ω)

)d
: qh|T ∈ P0(T ) ∀T ∈ Th

}
.

3.2. QC method for a simple lattice. In this (and only this) subsection we
make the simple lattice assumption. That is, we assume thatm = 1 and henceM = L.
In particular, in this subsection we write Vε(DRu;x) = V (DRu) and Rε(x) = R, as
they no longer depend on x.

The QC method [42] aims at finding a minimizer of

Π(uh) =
〈
V
(
DRu

h
)〉

L − F (uh)

in Uhper. Minimizing Π(uh) in Uhper indeed reduces the number of degrees of freedom of
the system from O(#(M)) to O(#(Th)) (recall that #(Th) 	 #(M)). However, one
must still spend O(#(M)) operations to compute the effective forces on the reduced
degrees of freedom. In order to have an efficient numerical method (i.e., a method
with O(#(Th)) operations) one introduces an approximation to Π(uh) which is called
the local QC method [42] (hereinafter referred to as the QC method).

The local QC method first approximates Dru
h with ∇ru

h within each T . (Hence
the name of the method: the nonlocal finite difference Dru

h is approximated with the
“local” directional derivative ∇ru

h.) Then for each x ∈ T one has

V (DRu
h) ≈ V (∇Ru

h) =W
(
∇uh|T

)
,

whereW (F) := V (FR) is the Cauchy–Born energy density associated with a displace-
ment gradient F (see (A.4) to obtain the precise definition of FR). Second, the local
QC method changes the sum over x ∈ L effectively to integration over Ω; i.e.,

Eqc(uh) :=

∫
Ω

W
(
∇uh

)
dx =

∑
T∈Th

|T |W
(
∇uh|T

)
.

The variational formulation of the QC method is thus

(3.2)

∫
Ω

∑
r∈R

δW
(
∇ru

h
)
:∇rv

hdx = Fh(vh) ∀vh ∈ Uhper,

where δW denotes the derivative of W , the semicolon denotes the inner product of
matrices, and Fh(vh) is some approximation to 〈f, vh〉M.

Error analysis of the local QC method yields a first-order convergence of the
deformation gradient (i.e., roughly speaking, of a quantity ‖uh − u‖W 1,p(Ω)) with
respect to sizes of triangles T ∈ Th (see, e.g., [30, 31, 37]). A more refined analysis
shows that the local QC method can be second-order accurate [18, 20, 33].
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3.3. Multilattice QC (MQC). Approximating the exact minimizer of Π(u)
with a piecewise linear uh ∈ Uhper may be accurate enough for the case when the
interatomic interaction Vε(•, x) varies smoothly with x (more precisely, if the mesh Th
resolves the variations in Vε(•, x) well). However, for many materials with multilattice
structure (examples of such materials were given in the introduction) the piecewise
linear approximation of the displacement u is not accurate.

In this subsection we present the MQC method first introduced in [43], which is
designed to handle the multilattice microstructure.

Define the space of QC displacements of the multilattice M as

(3.3) Uh,q =
{
uh +

m−1∑
α=1

qhαwα : uh ∈ Uhper, qhα ∈ Qh
per, α = 1, . . . ,m− 1

}
,

where qhα are the deformed shift vectors (recall that pα are the undeformed shift
vectors) and wα : M → R are the associated basis functions defined as

(3.4) wα|L+εpβ = δαβ (α, β = 0, . . . ,m− 1),

with δαβ denoting the Kronecker delta. It should be noted that the domain of defini-
tion of functions in Uh,q is M, whereas the functions in Uh are defined on the entire
R
d. For a more detailed introduction of the space of QC deformations, refer to [4]. In

each element T ∈ Th we thus have m− 1 nonzero shift vectors qhα, and we set qh0 := 0.
We denote

qh := (qh1 , . . . , q
h
m−1) ∈ (Qh

per)
m−1.

Next, form the interaction energy E(u) with u = uh +
∑m−1
α=1 q

h
αwα ∈ Uh,q:

E(u) = E

(
uh +

m−1∑
α=1

qhαwα

)

=

〈
Vε

(
DRε(x)

(
uh(x) +

m−1∑
α=1

qhα(x)wα(x)

)
;x

)〉
x∈M

=

〈
1

m

m−1∑
β=0

Vε

(
DRε(x+εpβ)

(
uh(x+ εpβ) +

m−1∑
α=1

qhα(x + εpβ)wα(x+ εpβ)

)
;x+ εpβ

)〉
x∈L

=

〈
1

m

m−1∑
β=0

Vε,β

(
DRε,β

uh(x+ εpβ) +

m−1∑
α=1

DRε,β
qhα(x+ εpβ)wα(εpβ)

)〉
x∈L

,

where we used periodicity of Vε (see (2.2)) and wα (which follows directly from the
definitions of wα and M). Similarly to the simple-lattice QC method, we perform a
local quasi-continuum approximation which consists of (i) changing the summation
over x ∈ L to the integration over Ω, (ii) approximating Dru

h with ∇ru
h, and (iii)

approximating qhα(x+ εpβ) with q
h
α(x):

E(u) ≈
∫
Ω

1

m

m−1∑
β=0

Vε,β

(
∇Rε,β

uh +

m−1∑
α=1

qhαDRε,β
wα(εpβ)

)
dx

=
∑
T∈Th

|T | 1
m

m−1∑
β=0

Vε,β

((
∇uh|T

)
Rε,β +

m−1∑
α=1

(
qhα|T

)
DRε,β

wα(εpβ)

)

=: Ẽmqc(uh,qh),
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where we used the identity ∇Rε,β
uh|T =

(
∇uh|T

)
Rε,β ; cf. (A.4).

Remark 3.1. The expression for Ẽmqc(uh, {qhα}) can be further simplified by
denoting the species of atoms εβ +Rε as Aε,β (formally Aε,β := (aβ,r)r∈Rε,β

, where

aβ,r ∈ {0, . . . ,m− 1} is defined so that paβ,r
∈ pβ + r + Z

d). Then the sum in Ẽmqc

can be simplified as the difference between the shift vectors of interacting atoms:

m−1∑
α=1

(
qhα|T

)
DRε,β

wα(εpβ) =

(
m−1∑
α=1

(
qhα|T

)
Drwα(εpβ)

)
r∈Rε,β

=
((
qhaβ,r

|T
)(
wα(εpaβ,r

)− wα(εpβ)
))

r∈Rε,β

=
((
qhaβ,r

|T
)
−
(
qhβ |T

))
r∈Rε,β

.

This yields

(3.5) Ẽmqc(uh,qh) =
∑
T∈Th

|T | 1
m

m−1∑
β=0

Vε,β

((
∇Rε,β

uh + qhAε,β
− qhβ

)∣∣
T

)
.

In the next step, the shift vectors qα are eliminated from (3.3) by requiring that
the variation of Ẽmqc(uh, {qα}) with respect to qγ in each triangle be zero:

1

m

m−1∑
β=0

∑
r∈Rβ

V ′
ε,β,r

((
∇uh|T

)
Rε,β +

m−1∑
α=1

(
qhα|T

)
DRε,β

wα(εpβ)

)
Drwγ(εpβ) = 0

(γ = 1, 2, . . . ,m− 1).

(3.6)

The equations (3.6) form a system of m− 1 equations for m− 1 unknowns (qα)
m−1
α=1 in

each T . A solution of this system gives us the shift vectors qα depending (as a rule,
nonlinearly) only on the displacement gradient:

qh|T = q
(
∇uh|T

)
.

Note that the function q(F) does not depend on T , unless different periodic materials
are considered in different elements T .

Remark 3.2. The function q(F) determines the lattice microstructure of a ma-
terial under the macroscopic displacement gradient F. Often there is more than one
lattice microstructure corresponding to a particular F. Well-posedness of equations
(3.6) is studied in [20] under the assumption that the entire atomistic system is H1-
stable, and in [5] under the assumption of dominance of nearest-neighbor interaction
in one dimension.

In different applications there may be different additional conditions for choosing
the unique q(F) (this can be the condition of a global minimum of the microenergy, or
proximity to a given microfunction). In this paper we will not focus on such additional
conditions and will therefore not discuss in detail the existence and uniqueness of
solutions of the respective microscopic and macroscopic equations. Thus, at this point,
by q(F) we formally denote one of the solutions of (3.6), or leave q(F) undefined if
(3.6) admits no solutions. In section 6 we will take a slightly more formal account of
existence and uniqueness.

We now form a QC energy with qα eliminated:

(3.7) Emqc(uh) := Ẽmqc
(
uh,q

(
∇uh

))
.
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The QC equation of equilibrium now reads: find uh ∈ Uhper such that

〈δEmqc(uh), vh〉Ω = Fh(vh) ∀vh ∈ Uhper,

where Fh(vh) is some approximation to 〈f, vh〉M. The function uh gives a macroscopic

displacement of the material, and one needs to compute uh +
∑m−1

α=1 q
h
αwα for the

microstructure. We note that since the qα were found by letting the variation of
Ẽmqc(uh, qα) with respect to qα be zero, we have

(3.8) δEmqc(uh) = δuhẼ
mqc(

uh,q
(
∇uh

))
.

Remark 3.3. Instead of eliminating qh = q(∇uh), one could also look for a
critical point (or a minimizer) of the energy Ẽmqc(uh,qh) with respect to both uh and
qh (see, e.g., [40]).

3.4. Application of the QC method to the simplified model. We illustrate
an application of the QC method to the simplified one-dimensional (1D) model (2.8)
for two species of atoms (i.e., m = 2), ψε(0) = ψ1, ψε

(
ε
2

)
= ψ2.

If we approximate the exact solution with a piecewise affine displacement uh ∈
Uhper (i.e., without introducing shift vectors, as done in the simple-lattice QC), then
we will find the approximate energy

∑
T∈Th

|T | 1
2

[
ψ1

(∇ru
h)2

2
+ ψ2

(∇ru
h)2

2

]
=
∑
T∈Th

|T | ψ1 + ψ2

2

(∇ru
h)2

2
.

Here ψ̃0 = ψ1+ψ2

2 is the wrong effective spring constant, since if the two springs in
series are replaced with two identical springs with the effective spring constant ψ0,
then ψ0 = 2ψ1ψ2

ψ1+ψ2
(see, e.g., [13]).

If instead we allow for nonzero shift vector q1, then the corresponding MQC
energy (3.5) is

Ẽmqc(uh, qh1 ) =
∑
T∈Th

|T | 1
2

[
ψ1

(∇ru
h + qh1 )

2

2
+ ψ2

(∇ru
h − qh1 )

2

2

]

with r = 1
2 . The strong form of (3.6) in this case can be obtained by differentiating

the above expression with respect to qh1 in each T :

ψ1

(
(∇ru

h + qh1 )|T
)
− ψ2

(
(∇ru

h − qh1 )|T
)
= 0,

from which we find

qh1 |T =
ψ2 − ψ1

ψ1 + ψ2

(
∇ru

h|T
)
.

Substituting this back into the MQC energy (cf. (3.7)) yields

Emqc(uh) =
∑
T∈Th

|T | 1
2

[
ψ1

1

2

( 2ψ2

ψ1 + ψ2

(
∇ru

h|T
))2

+ ψ2
1

2

( 2ψ1

ψ1 + ψ2

(
∇ru

h|T
))2]

=
∑
T∈Th

|T | 2ψ1ψ2

ψ1 + ψ2

(∇ru
h|T )2
2

,

where the effective spring constant ψ0 = 2ψ1ψ2

ψ1+ψ2
is now computed correctly.
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k3

k2

k1

Fig. 3. Illustration of a 2D model problem with heterogeneous interaction.

4. Homogenization of atomistic media. We now present another coarse-
graining strategy based on homogenization. We derive below the homogenized model
of the atomistic material which will be the basis for formulating and analyzing a QC
method for multilattices.

We note that there are existing works applying formal homogenization techniques
to upscaling atomistic equations; see [13, 14, 24] and references therein. In the present
section we derive the upscaled equations for a general model of interaction in many
dimensions as opposed to the pairwise interaction in one dimension assumed in the
upscaled equations [13, 14, 24]. The upscaled equations are derived using a formal
asymptotic expansion. Rigorous error bounds for the homogenized equations can be
found in the preprint [4] for the case of the linear 1D nearest-neighbor interaction,
and in [5] for the case of a 1D finite-range nonlinear interaction.

4.1. Asymptotic expansion. In order to take into account the local variation
of the atomistic interaction we think of the displacement as depending on a fast and
a slow scale u(x) ∼ u(x, x/ε). We define x ∈ R

d, the macro (“slow”) variable, and
y ∈ Z

d + P , the micro (“fast”) variable related to x as y = x/ε, and consider a series
of functions un : Rd × (Zd + P) → R

d indexed by n = 0, 1, 2 . . . . As we consider the
local structure and interaction to be periodic, we assume that the functions un are
P-periodic in the fast variable; i.e., they satisfy for all (x, y) ∈ Ω× P

un(x, y + j) = un(x, y) ∀j ∈ Z
d,

while the behavior with respect to x is similar, as considered in the previous sections,

un(x + i, y) = un(x, y) ∀i ∈ Z
d.

We then consider the asymptotic expansion

(4.1) u(x) ∼
(
u0(x) + εu1(x, y) + ε2u2(x, y) + · · ·

)∣∣
y=x/ε

∀x ∈ M.

Notice that we directly assume that the homogenized solution, u0, does not depend
on y.

We now proceed as in the “classical homogenization” [8, 10, 39] and insert the
ansatz (4.1) into (2.5):〈(∑

r∈Rε

V ′
ε,r

(
Dx,Rεu

0 + εDx,RεTy,Rεu
1 +Dy,Rεu

1 + · · ·
)
,

Dx,rTy,rv + ε−1Dy,rv

)∣∣∣∣∣
y=x/ε

〉
M

= 〈f, v〉M,



NUMERICAL METHODS FOR MULTILATTICES 13

where the test functions v = v(x, y) are continuous and smooth in x ∈ Ω and dis-
crete in y ∈ P . Here we used the relation (A.3) to expand the full derivative Dr

through partial derivatives Dx,r, Dy,r, and the translation operator Ty,r, and used
the collection-of-derivatives notation DR (see Appendix A.3 for more details).

We then extend the equation on the entire M×P :〈∑
r∈Rε

V ′
ε,r

(
Dx,Rεu

0 + εDx,RεTy,Rεu
1 +Dy,Rεu

1 + · · ·
)
,

Dx,rTy,rv + ε−1Dy,rv

〉
M×P

= 〈f, v〉M×P .

(4.2)

We now expand this equation in powers of ε. For that, we use the approximation
Dx,r ≈ ∇x,r (i.e., we essentially use Taylor series to expand Dx,r), and the notations
Vε(•;x) = V (•; y) and Rε(x) = R(y), and change a sum over M to an integral:〈∑

r∈R
V ′
r

(
∇x,Ru

0 + ε∇x,RTy,Ru
1 +Dy,Ru

1 + · · ·
)
,

∇x,rTy,rv + ε−1Dy,rv

〉
Ω×P

= 〈f, v〉Ω×P ,

(4.3)

where 〈•〉Ω×P is a shorthand for
∫
Ω
〈•〉Pdx.

We first collect the O(ε−1) terms in (4.3):〈∑
r∈R

V ′
r

(
∇x,Ru

0 +Dy,Ru
1
)
, Dy,rv

〉
Ω×P

= 0.

As usual in homogenization we write the solution of this equation (of course, equipped
with the zero-average boundary conditions) as u1(x, y) = χ(∇xu

0(x); y)+ū1(x), where
χ = χ(F; y) : Rd×d × P → R

d solves

Find χ(F, •) ∈ U#(P)

s.t.

〈∑
r∈R

V ′
r

(
FR +Dy,Rχ(F)

)
, Dy,rσ

〉
P

= 0 ∀σ ∈ U#(P).
(4.4)

As earlier, χ(F, y) can be formally understood as some solution to (4.4), similarly
to the shift vector function qh(F) discussed in Remark 3.2. We will establish the
formal equivalence of χ(F, y) and qh(F) in Theorem 6.1; hence the results in the cited
references [5, 20] are applicable to well-posedness of (4.4) also.

To obtain the equation for the homogenized solution u0(x), we collect the O(ε0)
terms in (4.3) and use the test function v̄ of x only:〈∑

r∈R
V ′
r

(
∇x,Ru

0 +Dy,Ru
1
)
,∇x,rv̄

〉
Ω×P

= 〈f, v̄〉Ω×P .

This leads to the homogenized equation

(4.5) 〈δΦ0(∇xu
0),∇xv̄〉Ω = 〈f, v̄〉Ω,
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or equivalently, in the strong form, −∇x · δΦ0(∇xu
0) = f(x), where δΦ0 : R

d×d →
R
d×d satisfies

(4.6) δΦ0(F) =

〈 ∑
r∈R(y)

V ′
r

(
FR+Dy,Rχ(F)

)
r�

〉
y∈P

.

Thus, we obtained the equation for the homogenized displacement u0 with the homog-
enized tensor δΦ0. Equation (4.5) needs to be supplemented with boundary conditions,
for instance by requiring that u0 is periodic and has zero average.

As an illustrative example, in the case of a pair interaction potentials, we can
write V (DR(y)u; y) =

∑
r∈R(y)Φr(Dru; y) (cf. the Lennard–Jones potential in (2.1));

consequently,

δΦ0(F) =

〈 ∑
r∈R(y)

Φ′
r

(
Fr +Dy,rχ(F)

)
r�

〉
y∈P

.

Remark 4.1. In the above formal arguments we assumed, for simplicity, that
the external force f = f(x) is nonoscillating (i.e., effectively does not depend on y)
and is defined on entire Ω. We emphasize that oscillatory external forces (of the
form f(x, y)|y=x/ε) could also be considered. The homogenized equation would then
depend on a proper average of the external forces. The assumption that f is defined
on entire Ω can later be relaxed once the homogenized equations are discretized on a
finite element mesh.

Remark 4.2. Instead of upscaling the original discrete problem (2.5) to a contin-
uous problem of nonlinear elasticity (4.5), one can consider an alternative approach
where the upscaled model is discrete.

For instance, one can approximate (4.2) by taking discrete x ∈ L and approxi-
mating Dx,r• ≈ (Dx•)r, where Dxu(x) ∈ R

d×d is the discrete gradient of u ∈ Uper(L)
at the point x ∈ L defined as (Dxu(x))ek = Dx,eku(x), k = 1, . . . , d, and ek is the kth
standard basis vector of R

d. Following the procedure described above for asymptotic
expansion, one can derive the following upscaled equation:

(4.7) 〈δΦ0(Dxu
0), Dxv〉L = 〈f, v〉L ∀v ∈ U#(L),

where δΦ0 is defined by (4.6), the same equation as for the continuum homogenization.
Equation (4.7) is upscaled in the sense that δΦ0 no longer depends on the fast variable
y, and we can apply the standard QC method to it. The reader can refer to our preprint
[4] for a similar approach. An advantage of the discrete homogenization is that it is
not required to assume a continuous force f to derive (4.7).

Underlying homogenized energy. We claim that, formally, the function δΦ0(F)
defined by (4.6) is the derivative of the following function:

(4.8) Φ0(F) :=
〈
V
(
FR+Dy,Rχ(F)

)〉
y∈P ,

where χ = χ(F) is some solution to (4.4).
Indeed, assuming enough regularity of V and χ, we can compute the variation of

(4.8) with respect to F:

(4.9) δΦ0(F0) :G =

〈∑
r∈R

V ′
r

(
FR+Dy,Rχ(F0)

)
· (Gr +Dy,Rδχ(F) :G)

〉
y∈P

.
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Since δχ(F) :G ∈ U#(P), the second term in (4.9) drops due to (4.4), and we have

δΦ0(F) :G =

〈∑
r∈R

V ′
r

(
FR+Dy,Rχ(F)

)
·Gr
〉
y∈P

=

〈∑
r∈R

V ′
r

(
FR+Dy,Rχ(F)

)
r� :G

〉
y∈P

,

which is consistent with (4.6).
Hence, (4.5) can be written as

〈δE0(u0), v〉Ω = 〈f, v〉Ω,

where

(4.10) E0(u0) :=

∫
Ω

Φ0(∇u0)dx.

The fact that the homogenized equations have an underlying energy may be impor-
tant in some applications where, for instance, one chooses to use nonlinear conjugate
gradient algorithms or needs to check for stability of numerical solutions.

4.2. Application of homogenization to the simplified model. In order to
make the steps of the above formal homogenization technique more transparent, we
apply it to the simplified model (2.9), written in a strong form as

D−r(ψε(x)Dru(x)) = f(x) ∀x ∈ M,

where ψ(y) := ψε(εy) and r := 1
m is fixed throughout this subsection. We calculate

the application of the full derivative Dr (see Appendix A.2 for the precise definition)
to (4.1),

Dru(x, y) = (Dx,rTy,r +
1
εDy,r)(u

0(x) + εu1(x, y) + · · · )
= Dx,ru

0(x) +Dy,ru
1(x, y) + εDx,rTy,ru

1(x, y) + · · ·

and hence insert (4.1) into (2.5),

(Dx,−rTy,−r+
1
εDy,−r)

(
ψ(y)(Dx,ru

0(x)+Dy,ru
1(x, y)+· · · )

)
= f(x) ∀x ∈ M, ∀y ∈ P ,

and change the discrete derivative with respect to x ∈ M to the continuum derivative
with respect to x ∈ R:

(∇x,−rTy,−r+
1
εDy,−r)

(
ψ(y)(∇x,ru

0(x)+Dy,ru
1(x, y)+· · · )

)
= f(x) ∀x ∈ R, ∀y ∈ P .

Collecting the O(ε−1) terms in this equation yields

Dy,−r
(
ψ(y)(∇x,ru

0(x) +Dy,ru
1(x, y))

)
= f(x) ∀x ∈ R, ∀y ∈ P ,

and we can formally write the solution to this equation as

u1(x, y) = χ(∇xu
0(x)),

where the cell problem (4.4) in the strong form reads

Dy,−r
(
ψ (Fr +Dy,rχ(F ))

)
= 0.
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For our simplified model, the cell problem admits the exact solution

(4.11) Dy,rχ(F ) =
C

ψ
− Fr

with C = Fr 〈1/ψ〉P and P given by (2.7). The homogenized energy density is
therefore
(4.12)

Φ0(F ) =
〈
ψ 1

2 (Fr+Dy,rχ)
2
〉
P =

〈
ψ 1

2

(
Fr+ C

ψ −Fr
)2〉

P
= 1

2
C2

〈1/ψ〉P = 〈1/ψ〉−1
P

(Fr)2

2 ,

which yields the homogenized energy

E0(u0) =

∫ 1

0

〈1/ψ〉−1
P

(∇ru
0)2

2 dx,

with the correct form of the effective spring constant ψ0 = 〈1/ψ〉−1
P , given by the

harmonic average of ψ.
We note that this homogenization procedure, and the result that the effective

energy density coefficient is in the form of a harmonic mean of the original coefficient,
are well known for PDEs [10, Chap. 1]. The expression for ψ0 is also in agreement
with that found in section 3.4 for m = 2.

5. Homogenized QC method. We formulate a numerical macro-to-micro
method for treating multilattices, which we call the homogenized quasicontinuum
(HQC) method. We introduce the HQC method in the framework of numerical ho-
mogenization. For the case of materials with known periodic structure (i.e., crystalline
materials) the HQC method will be shown to be equivalent to applying finite elements
to the homogenized equations (see Theorem 6.1).

We emphasize that the HQC method can be generalized to noncrystalline mate-
rials and to time-dependent zero-temperature and, possibly, finite-temperature prob-
lems. Indeed, in section 8 we give an application of the HQC method to a stochastic
material, and in section 9 we present an application of it to a 1D time-dependent
zero-temperature evolution. In addition, the HQC method serves as a convenient
framework for the error analysis [5, 4].

We present the HQC algorithm assuming that the microstructure is a function of
the macroscopic displacement. A reformulation analogous to the concurrent coupling
of [40] is also possible (cf. also Remark 3.3).

5.1. HQC method. The method will be presented using a macro-to-micro
framework as is used in some numerical homogenization procedures [1, 19, 26, 34,
44]. We present the method for the case when the external force f = fε may be
microstructure-dependent.

5.1.1. Macroscopic affine displacement. We again assume a partition Th of
the domain Ω into simplicial elements T , recall the definition of the space Uhper, (3.1),
and introduce its subspace of zero-mean functions Uh# ⊂ Uhper.

5.1.2. Sampling domains. We choose a representative position xrepT ∈ L and
a sampling domain Srep

T := xrepT + εP associated with each T ∈ Th. The sampling
domain is normally chosen inside T (the mesh can be highly refined in certain regions,
and therefore some sampling domains Srep

T may be bigger than T ).
The sampling domains have the associated operator of averaging over the sampling

domain, 〈•〉x∈Srep
T

, and the functional space U#(S
rep
T ) = U#(εP) (see (A.1) for the

precise definition).
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5.1.3. Energy and macro nonlinear form. Define the atomistic interaction
energy of the HQC method,

(5.1) Ehqc(uh) :=
∑
T∈Th

|T |
〈
Vε(DRεRT (u

h))
〉
x∈Srep

T

,

where RT (u
h), defined by (5.3), is the microfunction constrained by uh in the sampling

domain Srep
T .

The functional derivative of the above energy reads

(5.2) 〈δEhqc(uh), vh〉Ω =
∑
T∈Th

|T |
〈∑
r∈Rε

V ′
ε,r(DRεRT (u

h)), Dr δRT (u
h) vh

〉
x∈Srep

T

,

where δRT (u
h) is the functional derivative of the reconstructionRT (u

h) defined below.

5.1.4. Microproblem. Given a function uh ∈ Uhper, RT (uh) is a function such

that RT (u
h)− uhlin ∈ U#(S

rep
T ) and

(5.3)

〈∑
r∈Rε

V ′
ε,r(DRεRT (u

h)), Drs

〉
x∈Srep

T

= 0 ∀s ∈ U#(S
rep
T ),

where uhlin is an affine extrapolation of uh|T over the entire Rd. If Srep
T ⊂ T , then uhlin

can be substituted with uh.
Remark 5.1. When modeling essentially nonlinear phenomena (e.g., martensite-

austenite phase transformation), one should require that the microstructure corre-
sponds to a stable equilibrium. That is, one should require, in addition to (5.3), that
w = RT (u

h)− uhlin ∈ U#(S
rep
T ) is a local minimum of 〈Vε(DRε(u

h
lin + w))〉x∈Srep

T
[43,

p. 238].
Remark 5.2. In the case of linear interaction, the reconstruction RT is a linear

function, and hence δRT (u
h)vh = RT (v

h), which makes the derivative of the HQC
energy (5.2) take the form

〈δEhqc(uh), vh〉Ω =
∑
T∈Th

|T |
〈∑
r∈Rε

V ′
ε,r(DRεRT (u

h)), DrRT (v
h)

〉
x∈Srep

T

.

Remark 5.3. The functional derivative of the HQC energy (5.2) can equivalently
be written as

(5.4) 〈δEhqc(uh), vh〉Ω =
∑
T∈Th

|T |
〈∑
r∈Rε

V ′
ε,r(DRεRT (u

h)), (∇rv
h|T )

〉
x∈Srep

T

,

by noting that DrδRT (u
h)vh = Drv

h
lin +

(
DrδRT (u

h)vh)−Drv
h
lin

)
, that

∑
r∈Rε

〈V ′
ε,r(DRεRT (u

h)), (DrδRT (u
h)vh −Drv

h
lin)〉x∈Srep

T
= 0

in view of (5.3), and that Drv
h
lin = ∇rv

h on each T . Here we used the fact that
δRT (u

h)vh − vhlin ∈ U#(S
rep
T ), which follows from taking the functional derivative of

RT (u
h)− uhlin ∈ U#(S

rep
T ).
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5.1.5. Reconstruction. The functions RT (u
h) describe the microstructure of

the solution inside each Srep
T . One can reconstruct the solution describing the micro-

structure, uh,c, from the homogenized solution uh by combining RT (u
h) into a single

function defined on the entire atomistic lattice M:

(5.5) uh,c(x) = RT (u
h)(x) (x ∈ T ∩M).

That is, we effectively extend RT (u
h) periodically on each T . It should be noted that

(5.5) does not uniquely determine uh,c(x) if x ∈ ∂T for some T ∈ Th.
5.1.6. Variational problem. We define the homogenized QC approximation

as the solution uh ∈ Uh# of

(5.6) 〈δEhqc(uh), vh〉Ω = F hqc(vh) ∀vh ∈ Uh#,

where

(5.7) F hqc(vh) =
∑
T∈Th

|T |〈fε, vh〉x∈Srep
T
.

If the external force is smooth, it could instead be evaluated for a single representative
atom.

In the case of linear nearest-neighbor 1D interaction it can be shown that (5.7) is
well-posed and that the HQC solution uh approximates the solution u of the original
equations only in the L2 norm. To get a good approximation in the H1 norm, the
reconstructed solution uh,c should instead be considered. (This is analogous to the
case of continuum homogenization; see the discussion in section 2.2.) We will report
the analysis for the nonlinear case in a separate paper (see the preprint [4, Thms. 4
and 5] for the analysis of a linear model).

5.2. HQC algorithm. The problem (5.6) is nonlinear, and its practical imple-
mentation is usually done by Newton’s method. We briefly sketch below an algorithm
for solving (5.6).

For Newton’s method we need to compute the second derivative of the energy
(5.1):

〈δ2Ehqc
(uh)wh, vh〉Ω =

∑
T∈Th

|T |
〈 ∑
r,ρ∈Rε

V ′′
ε,r,ρ(DRεRT (u

h))DρδRT (u
h)wh,

DrδRT (u
h)vh

〉
x∈Srep

T

.

(5.8)

5.2.1. Newton’s iterations for the macroproblem. The algorithm based
on Newton’s method consists of choosing an initial guess uh,(0) ∈ Uh# and performing
iterations
(5.9)〈
δ2E

hqc(
uh,(n)

)(
uh,(n+1)−uh,(n)

)
, vh
〉
Ω
=
〈
δEhqc

(
uh,(n)

)
, vh
〉
Ω
+F hqc(vh) ∀vh ∈ Uh#,

with n = 0, 1, . . . , until uh,(n+1) becomes close to uh,(n) in a chosen norm.
To solve the linear system (5.9) for uh,(n+1) − uh,(n) ∈ Uh#, we choose a nodal

basis whk (1 ≤ k ≤ K) of Uhper. One way to satisfy the condition 〈uh〉Ω = 0 would be
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to perform all the computations with one basis function eliminated (e.g., to consider
whk for 2 ≤ k ≤ K) and postprocess the final solution as uh − 〈uh〉Ω.

The stiffness matrix of the system (5.9) will thus be

Alm =
〈
δ2E

hqc(
uh,(n)

)
whl , w

h
m

〉
Ω
,

and the load vector will be

bm =
〈
δEhqc

(
uh,(n)

)
, whm

〉
Ω
+ F hqc(whm).

As given by the formula (5.8), we need to compute the solution of microproblem
RT (u

h,(n)) on each sampling domain Srep
T as well as its derivative δRT (u

h,(n))whl .

5.2.2. Solution of the microproblem. The microproblem (5.3) can also be
solved with Newton’s method. For that, in each T one needs to choose an initial guess

R
(0)
T to RT (u

h,(n)), for instance R
(0)
T (x) := uh,(n)(x), and solve〈∑

r∈Rε

V ′
ε,r

(
DRεR

(ν)
T

)
+
∑

r,ρ∈Rε

V ′′
ε,r,ρ

(
DRεR

(ν)
T

)
Dρ

(
R

(ν+1)
T −R

(ν)
T

)
, Drs

〉
x∈Srep

T

= 0

∀s ∈ U#(S
rep
T ),

with respect to R
(ν+1)
T (ν = 0, 1, . . .) constrained by R

(ν+1)
T − u

h,(n)
lin ∈ U#(S

rep
T ), until

the difference between R
(ν+1)
T and R

(ν)
T is small in a chosen norm.

After that, we can compute δRTw
h
l = δRT

(
uh,(n)

)
whl by solving

(5.10)

〈 ∑
r,ρ∈Rε

V ′′
ε,r,ρ

(
DRεR

(ν)
T

)
Dρ(δRTw

h
l ), Drs

〉
x∈Srep

T

= 0 ∀s ∈ U#(S
rep
T )

constrained by δRTw
h
l − (whl )lin ∈ U#(S

rep
T ). Notice that the gradients of all but d+1

basis functions Dr(w
h
l )lin inside T are zero, which implies that we essentially need to

solve the problem (5.10) d+ 1 times.
Also observe that when computing δRT

(
uh,(n)

)
whl , we need to invert the same

linear operator as in the final Newton iteration, which allows for some additional
optimization.

5.2.3. Possible modifications of the algorithm. First, notice that when
solving for uh,(n+1) we could linearize the problem on the previous iteration uh,(n).
In that case we would have linear cell problems, and thus we would need only outer
Newton iterations, but it would be required to keep the values of the microsolution
RT (u

h,(n)) from the previous iteration. We notice, however, that for a practical
implementation of the above algorithm it may also be required to keep the values of
the microsolution: one needs these values to initialize the inner Newton iterations;
depending on the initial guess for the microproblem, the iterations may converge to
a wrong microstructure.

Another modification could be to compute the contribution of the external force
fε in (5.7) for a single atom in the case of no oscillations in fε.

In the case of linear interaction, the algorithm becomes simpler: one does not
need to do Newton iterations. Nevertheless, the algorithm in section 5.2 is applicable
to the linear problem, where it converges in just one iteration.
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6. Equivalence of numerical methods for multilattices. In this section
we show the equivalence of three different methods for computing the equilibrium
of multilattice crystals, namely (1) the proposed HQC method, (2) finite element
discretization of continuum homogenization, and (3) the MQC method. We compare
only the interaction energy of the method, since the external forces for these methods
can always be chosen the same.

Below we specify the three methods that we compare. It should be noted that,
given the macroscopic displacement uh, we cannot guarantee uniqueness of the energy,
as there may be several solutions to the microproblems corresponding to different
phases of a multilattice crystal. To rigorously address such nonuniqueness, we allow
for all possible combinations of microfunctions in each element T ∈ Th and compare
the set of the resulting energies on a fixed uh ∈ Uhper for the three methods.

In the following definitions we adopt the convention that for two sets, A and B,
and a number, γ, A+B := {a+ b : a ∈ A, b ∈ B} and γA := {γa : a ∈ A}.
Method 1 (HQC). For uh ∈ Uhper we define the energy of the HQC method as a set

Ehqc(uh) ⊂ R,

(6.1) Ehqc(uh) :=
∑
T∈Th

|T | ehqcT (uh),

where ehqcT (uh) ⊂ R is defined as

ehqcT (uh) :=
{〈
Vε(DRεRT (u

h))
〉
x∈Srep

T

: RT (u
h) is a solution to (5.3)

}
.

Method 2 (FEM for homogenized equations). The energy of FEM discretiza-
tion of the homogenized energy is E0(uh), defined by

(6.2) E0(uh) :=
∑
T∈Th

|T |Φ0(∇uh|T ),

where Φ0 is defined as a set

Φ0(F) :=
{〈
V
(
FR +Dy,Rχ

)〉
y∈P : χ is a solution to (4.4)

}
.

Method 3 (MQC). We define

(6.3) Emqc(uh) :=
∑
T∈Th

|T | emqc
T (uh),

where

emqc
T (uh) :=

{
1

m

m−1∑
β=0

Vε,β

((
∇uh|T

)
Rε,β +

m−1∑
α=1

(
qhα|T

)
DRε,β

wα(εpβ)

)
:

qh = q(∇uh) is a solution to (3.6)

}
.

Theorem 6.1. Let Th be a triangulation of Ω, and Uhper be the associated function

space defined by (3.1). Then for any uh ∈ Uhper, there holds

Ehqc(uh) = E0(uh) = Emqc(uh),
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where Ehqc(uh), E0(uh), Emqc(uh) are defined by, respectively, (6.1), (6.2), (6.3).
Proof. Part 1, Ehqc(uh) = E0(uh). First, we show that the microfunctions of

Methods 1 and 2, RT and χ, are related through

(6.4)
(
RT (u

h)
)
(x) = uhlin(x) + εχ

(
∇uh|T ; xε

)
.

Indeed, denote F = ∇uh|T and compute DrRT (u
h):

(6.5) DrRT (u
h) = Dru

h
lin + εDrχ

(
F; xε

)
= Fr +Dy,rχ

(
F; xε

)
.

The following calculation shows that the left-hand sides of (5.3) and (4.4) coincide up
to a factor ε−1: 〈∑

r∈R
V ′
ε,r(DRε(x)RT (u

h);x), Drs(x)

〉
x∈Srep

T

=

〈∑
r∈R

V ′
r (DR(y)RT (u

h); y), ε−1Dy,rs(εy)

〉
y∈P

= ε−1

〈∑
r∈R

V ′
r (FR+Dy,R χ(F; y); y), Dy,rσ(y)

〉
y∈P

,

where we do the change of the independent variables y = x
ε , and of the test function

σ(y) = s(εy). Hence (6.4) indeed relates the set of solutions of (5.3) and (4.4) with
F = ∇uh|T .

The following straightforward calculation concludes the proof of Ehqc(uh) =
E0(uh):

ehqcT (uh) =
〈
Vε
(
DRεRT (u

h)
)〉
x∈Srep

T

=
〈
Vε
(
(∇uh|T )Rε +Dy,Rεχ

(
∇uh|T ; xε

))〉
x∈Srep

T

=
〈
V
(
(∇uh|T )R+Dy,Rχ(∇uh|T ; y)

)〉
y∈P = Φ0(∇uh|T ),

where we used (6.5) in the first step of this calculation.
Part 2, Ehqc(uh) = Emqc(uh). The main component of the proof consists of

fixing T ∈ Th and showing that qhα|T and RT (u
h) are related through

(6.6) qhα|T = U(εpα)− U(0), α = 0, . . . ,m− 1,

where U := RT (u
h)− uhlin ∈ U#(S

rep
T ).

First, assume that RT (u
h) is a solution to (5.3). Notice that due to the εP-

periodicity of U , we can write

U(x) =

m−1∑
α=0

U(εpα)wα(x);

then subtracting the constant U(0) and applying Dr yields

DrU(x) = Dr

(
−U(0) +

m−1∑
α=0

U(εpα)wα(x)

)
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= Dr

(
m−1∑
α=1

U(εpα)wα(x)

)

= Dr

m−1∑
α=1

(q̃hα|T )wα(x),

where we used the identity
∑m−1
α=0 wα(x) = 1 for all x ∈ M.

We then substitute qhα|T = U(εpα)−U(0) into (3.6). The argument of Vε in (3.6)
can be written as

(
∇uh|T

)
Rε,β +

m−1∑
α=1

(
qhα|T

)
DRε,β

wα(εpβ) = DRε,β

(
uhlin +

m−1∑
α=1

(qhα|T )wα(εpβ)
)

= DRε,β

(
uhlin + U(εpβ)

)
= DRε(x)RT (u

h)(x)
∣∣
x=εpβ

,

(6.7)

and therefore, upon noticing that summations over x = εpβ and over x ∈ Srep
T coincide

for the εP-periodic functions, we conclude that the left-hand sides of (3.6) and (5.3)
coincide when s(x) is chosen as s(x) = wγ(x) − 〈wγ(x)〉x∈εP , γ = 1 . . . ,m− 1 (then
Drs = Drwγ). This proves that q

h
α|T = U(εpα)− U(0) satisfies (3.6).

To show the converse, assume that qh is a solution to (3.6), and let RT be defined
through (6.6). We then notice that, due to calculation (6.7), (5.3) holds with the
function s(x) = wγ(x), γ = 1 . . . ,m − 1, and, obviously, with the function s(x) = 1.
These functions form a basis of Uper(P) = Uper(S

rep
T ), and therefore (5.3) holds with

any s ∈ U#(S
rep
T ) ⊂ Uper(S

rep
T ); that is, RT is a solution to (5.3). This concludes the

proof that the set of solutions of (3.6) and (5.3) are related through (6.6).

The stated identity Emqc(uh) = Ehqc(uh) follows from emqc
T (uh) = ehqcT (uh),

which follows directly from (6.7).
Remark 6.1. One can consider yet another approach to coarse-graining mul-

tilattices, namely consider the discretely homogenized equation (4.7) and apply to it
the standard QC method (see section 3.2). As a result, one will obtain energy of
〈Φ0(∇uh)〉Ω, which obviously coincides with the energy of the FEM applied to the
continuously homogenized equations.

As a corollary of Theorem 6.1 and Remark 6.1, the solutions corresponding to
the different methods considered, being critical points of the energy, also coincide (of
course, provided that the external force is treated in the same way for these methods).
Theorem 6.1 and Remark 6.1 are graphically summarized in Figure 4.

7. Application of the HQC method to a multilattice. In this section we
briefly report the results of application of the HQC method to the multilattice [4, sect.
8]. Note that due to Theorem 6.1, application of the MQC method to the multilattice
gives the same results.

We apply the HQC method to the 1D linear model problem, which is the same as
the one in section 2.2 but with a larger interaction range R. We compute the HQC
solution, uh, and the reconstructed (corrected) solution, uh,c, and compare them to
the exact solution u.

We prove (for nearest-neighbor interaction) and observe in numerical experiments
that ‖uh,c−u‖H1(M) converges with the first order in h, where h = maxT∈T diam(T)
and ‖•‖H1(M) denotes the discrete H

1 norm on the lattice M. Furthermore, we show
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Fig. 4. Equivalence of different methods. In Theorem 6.1 we prove equivalence of the proposed
method (HQC), the multilattice quasicontinuum method [43] (MQC), and FEM applied to the ho-
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Fig. 5. Results of application of the HQC method to a multilattice. A 1D linear nearest-
neighbor interaction model was used. We observe a first-order convergence of ‖uh,c −u‖H1(M), no

convergence of ‖uh−u‖H1(M), and a second-order convergence of ‖uh−u‖L2(M), which stagnates
at some point as h is refined.

that ‖uh − u‖L2(M) ≤ C1h
2 + C2ε; that is, the L2-error converges with the second

order up to some point where it stagnates at the level of C2ε as h is further refined.
The H1-error of uh − u, on the other hand, stays essentially constant as h is refined.
The results of our numerical experiments are shown in Figure 5.

The results of application of the HQC method to a nonlinear interaction are
qualitatively same as the presented results for the linear interaction.

8. Application of the HQC method to stochastic materials. The HQC
method can readily be generalized for noncrystalline materials such as glasses or com-
plex metallic alloys. For that, lacking the period of the microstructure P , one needs
only to take Srep

T large enough to accurately represent the material’s microstructure.
In this section we present an example of such computation.

In addition to taking Srep
T large enough, one could also average over an ensemble

of samples of different microstructures for a given macroscopic displacement gradient
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Fig. 6. Stochastic atomistic model: An illustration of the model (left) and an exact solution
for 32× 32 atoms (right).

∇uh|T in each element T ; however, we do not pursue this in the present work. We
refer the reader to [12, 27] and references therein for theoretical studies of stochastic
homogenization of lattice energies.

We take an atomistic system of 2048× 2048 atoms. That is, we choose ε = 1
2048

and M = εZ2 ∩ [0, 1)2. The atomistic bonds are chosen to have quadratic interaction
energy,

E(u) =

〈∑
r∈R

1
2ψε,r(x)|Dru|2

〉
x∈M

with R = {(1, 0), (0, 1), (1, 1), (−1, 1)}, as illustrated in Figure 6(a). The bonds’
strengths ψε,r are randomly generated with a uniform distribution between 0.5 and
10 for r = (1, 0) and r = (0, 1) (i.e., vertical and horizontal bonds), and between 0.1
and 5 for r = (1, 1) and r = (−1, 1) (i.e., diagonal bonds). Such choice of ψε,r leads
to interaction energy E(u) being a convex function of u. Only a single realization of
ψε,r is used for this test.

The external force is chosen as

f(x1, x2) = 10e− cos(πx1)
2−cos(πx2)

2

(
sin(2πx1)
sin(2πx2)

)
− f̄ ,

where f̄ is determined so that the average of f is zero. The equilibrium configuration
for a system with 32 × 32 atoms is illustrated in Figure 6(b). We stress that we no
longer have the period of the microstructure P and the associated representation of
the energy (2.2) which was needed in formulation of the MQC method or applying
the formal homogenization techniques.

We apply the HQC algorithm to the described system. We choose the sampling
domain Srep

T as a subsystem of Nrep×Nrep atoms. We then compute the HQC solution
and compare it to the exact solution of the problem. A structured triangular uniform
mesh with right-angled triangular elements with the leg size h = 1

4 ,
1
8 , . . . is used.

For comparison, we also produce the results of calculation with an affine displace-
ments for computing the effective elasticity tensor in each element T , i.e., when atoms
are not allowed to relax to equilibrium when an external displacement gradient F is
applied.

The relative errors of the interaction energy of the HQC and affine-displacement
solutions (Ehqc and Ead, respectively), as compared to the energy of the exact solution



NUMERICAL METHODS FOR MULTILATTICES 25

�

�

�

�

�

�

�

�
����

0.010 0.1000.0500.020 0.200
h

0.001

0.01

0.1

error

Nrep�16

Nrep�128

O�h2
�

� � Ead,h�E�

� � Ehqc,h�E�

Fig. 7. Dependence of relative error of computing the energy with the HQC method and a
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E, are plotted in Figure 7 for different mesh size h and different sampling domain size
Nrep. A second-order convergence of the HQC method and absence of convergence
of the solution computed according to the affine deformation can be observed. One
can also see that with Nrep = 128 (and even with Nrep = 16) one can get a rather
accurate numerical solution.

9. Application of the HQC method to time-dependent problems. We
apply the proposed HQC method to the 1D evolution of a multilattice, assumed to
be slow (i.e., with no thermal oscillations), described by the following equations:

〈M εü, v〉M = 〈δE(u), v〉M ∀v ∈ Uper(M),(9.1a)

u|t=0 = u0,(9.1b)

u̇|t=0 = 0.(9.1c)

Here u = u(t, x) ∈ C2([0, T ];Uper(M)) is the time-dependent displacement of atom
x, u0 = u0(x) ∈ Uper(M) is the initial displacement, M ε(x) = M

(
x
ε

)
is the mass of

atom x, u̇ = d
dtu, and ü = d2

dt2u. The energy E(u) of a deformation of the multilattice
M is as defined in section 2.1. The masses M =M(y), as well as the interaction, are
P-periodic functions. We assume no external forces.

One can, assuming no fast oscillations in time of the microstructure, perform the
two-scale expansion procedure for the time-dependent case (which closely follows the
continuum case [10]),

(9.2) 〈M0ü, v〉M = 〈δE0(u), v〉M ∀v ∈ Uper(M),

where E0(u) is given by (4.10) and M0 = 〈M〉P , and likewise formulate the macro-
to-micro discretization [3, 22],

〈M0üh, vh〉M = 〈δEhqc(uh), vh〉M ∀v ∈ Uhper.

For the numerical test we take the same lattices as for the simplified model with
m = 2 (see section 2.2). The atoms interact with the Lennard–Jones potential (2.1)
with

sx,x+εr =

{
0.4, x

ε is half-integer,

1.6, x
ε is integer,

�x,x+εr =

{
1.01, x

ε is half-integer,

0.99, x
ε is integer,
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Fig. 8. Error of time-dependent solution in (the discrete analogues of) the L∞([0, T ];L2(Ω))
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and the cut-off distance R = 3. The masses of atoms are

M ε(x) =

{
1, x

ε is half-integer,

2, x
ε is integer.

The atomistic system contains #(M) = 214 atoms.
The initial displacement has to conform with the assumption of absence of fast

vibrations of the microstructure. It is chosen in the following way. First, we compute
an equilibrium displacement u, i.e., such that 〈δE(u), v〉M = 0 for all v ∈ Uper(M).
Second, we compute an eigenvector of δ2E(u), u1, corresponding to the mode oscillat-
ing most slowly. Then, the initial displacement is taken to be u0 = u+0.01 u1

‖Du1‖L∞ .

With such an initial displacement, the solution remains smooth (i.e., most of energy
of the solution is contained in long wavelength modes) for times comparable to the
largest oscillation period, and one can compare a QC approximation of the solution
with the exact solution. Beyond this critical time, the shock waves appear, which
cause fast vibrations of the microstructure past them and hence make the approxi-
mation (9.2) invalid.

We compare the reconstructed solution obtained by the HQC discretization in
space with the reference solution obtained in the full atomistic computation. The
reconstruction of the HQC solution is performed as described in section 5.1.5. The
sampling domains Srep

T were chosen to be εP up to a shift in εZ. The HQC discretiza-
tion is performed on a sequence of meshes with h = 1

4 ,
1
8 , . . . . For the time integration,

we use the Verlet method with the timestep τ = 1
20h for the HQC solution and τ = 1

20ε
for the reference atomistic solution. We run the computation until T = 1

20 , which
corresponds to about a quarter of a period of oscillation of the solution.

The errors in (the discrete analogues of) the L∞([0, T ];L2(Ω)) norm and L2([0, T ];H1(Ω))
norm are presented in Figure 8. One can clearly observe for relatively large h a second-
order convergence in the L2(Ω) norm and a first-order convergence in theH1(Ω) norm,
and the convergence seems to stagnate as h is further reduced.

10. Summary and concluding remarks. We have considered the problem of
equilibrium of multilattice crystalline materials and discussed the application of the
(local) QC method [43] for such materials. We then have proposed a homogenization
framework and, based on it, proposed a numerical macro-to-micro method which we
called HQC. We have shown that the three methods, namely the HQC method,
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the QC method applied to the discretely homogenized equations, and the MQC, are
equivalent.

Despite equivalence of the methods for statics of multilattice, we argue that the
homogenization framework developed in this paper has several advantages. First, it
contributes to a better understanding of the MQC method and provides a link to the
existing theory of homogenization of PDEs. In particular, we have generalized and
applied the HQC method to the case of random materials and to the unsteady case,
numerically demonstrating convergence of the proposed numerical method. Second,
the developed homogenization framework allows for application of analytical tech-
niques available in the homogenization theory and thus seems most promising for
convergence analysis of numerical methods for multilattices. We refer to our preprint
[4] and an ongoing work [5] for an example of such analysis. We also note that the ex-
tension of the homogenization technique proposed in this paper to atomistic materials
at finite temperature is of high interest.

Appendix A. Notations. In this appendix we gather the frequently used no-
tations.

A.1. Function spaces. For any finite set S ⊂ R
d, we define the discrete aver-

aging (integration) operator 〈•〉S by

〈u〉S :=
1

#(S)

∑
x∈S

u(x),

and sometimes, more verbosely, as 〈u(x)〉x∈S . Here #(S) is the number of elements
in the set S.

We consider discrete periodic functions (e.g., displacements or external forces)
with the periodic cell Ω = [0, 1)d (d ∈ N), and the lattice (being, actually, the discrete
periodic cell) S ⊂ Ω (S = L,M) containing a finite number of points: #(S) < ∞.
The periodic extension of the lattice is denoted by Sper = S + Z

d. Such a space of
periodic functions is denoted by

(A.1) Uper(S) =
{
u : Sper → R : u(x+ a) = u(x) ∀x ∈ S, ∀a ∈ Z

d
}
,

and the space of periodic functions with zero average by

U#(S) =
{
u ∈ Uper(S) : 〈u〉S = 0

}
.

We do not have separate notations for scalar and vector-valued functions and explicitly
state whether the function is scalar- or vector-valued when it may cause ambiguity.

Similarly to the discrete averaging, we also use continuum averaging notation
〈u〉Ω :=

∫
Ω
u(x)dx, and for functions of two variables we write 〈v〉S1×S2 := 〈〈v〉S2〉S1 ,

where each Si (i = 1, 2) can be either continuous or discrete.
For vector-valued u = u(x) and v = v(x) we denote the pointwise scalar product

by u · v (i.e., (u · v)(x) = u(x) · v(x)), and the semi-inner product in Uper(L) by

〈u, v〉L = 〈u · v〉L =
1

#(L)
∑
x∈L

u(x) · v(x).

(It is a proper inner product only in U#(L).) We similarly define the pointwise scalar
product and the (semi-)inner product for functions of continuum variables and for
functions of several continuum or discrete variables.
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A.2. Operators. For u : S → R
d (S = L,M) we introduce the finite difference

Dx,ru,

Dx,ru(x) :=
u(x+ εr)− u(x)

ε
(for x ∈ S, r ∈ R

d such that x+ εr ∈ S).

In addition to differentiation operators, we define for u ∈ Uper(L1) the translation
operator Txu ∈ Uper(L1),

Tx,ru(x) := u(x+ εr) (for x ∈ S, r ∈ R
d such that x+ εr ∈ S).

The definitions of the discrete derivative and translation generalize to functions of
two variables by considering the partial discrete derivative and translation operators;
i.e., Dx,r, Tx,r applied to u(•, y), and Dy,r, Ty,r applied to u(x, •).

In homogenization we consider “traces on diagonal” of functions of two variables,
v = v(x, xε ). For such functions we introduce full translation and full derivative
operators Tr := Tx,rTy,r, Dr :=

1
ε (Tr − I) so that

(A.2) (Tru)|y=xε = Tx,r

(
u|
y=

x
ε

)
and (Dru)|y=xε = Dx,r

(
u|
y=

x
ε

)
.

The following relates the partial and the full derivatives:

Dr =
1
ε (Tx,rTy,r − I)

= 1
ε (Tx,rTy,r − Ty,r) +

1
ε (Ty,r − I)

= Dx,rTy,r +
1
εDy,r.(A.3)

Notice that the variables x and y are not symmetric in the definition of full
derivative. If a function does not depend on y, then the full derivative coincides with
the derivative in x (likewise for the translation). Hence, for functions of x only, we
sometimes omit the subscript x in the operators Dx,r and Tx,r.

For continuous functions we denote by ∇u a gradient of u and by ∇ru = (∇u)·r a
directional derivative. For a vector-valued function u, the directional derivative ∇ru
is defined componentwise, and the gradient ∇u is a matrix such that ∇ru = (∇u)r.

A.3. Functions of vector-indexed variables. We consider a general form
of interaction, where the energy of each atom depends arbitrarily on relative dis-
placements of all the nearby atoms. Namely, for the “interaction neighborhood”
R = {r1, . . . , rk} we consider functions

V (Dr1u,Dr2u, . . . , Drku).

Since the interaction neighborhood may be different for different atoms (recall that
we consider multilattices) and contain different numbers of neighbors k, we index
derivatives directly with r ∈ R. That is, we use the following notation for tuples α
indexed with r ∈ R,

(αr)r∈R := (αr1 , . . . , αrk) for R = {r1, . . . , rk},

and define

DRu := (Dru)r∈R, ∇Ru := (∇ru)r∈R.
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Thus, for the functions of R-indexed tuples we write

V (DRu) := V (Dr1u,Dr2u, . . . , Drku).

The common algebraic operations on R-indexed tuples are taken componentwise,
e.g.,

(A.4) DRu+DRv = (Dru+Drv)r∈R, FR = (Fr)r∈R, etc.,

which is fully analogous to the algebraic operations on k-dimensional vectors.
A partial derivative of V (DRu) with respect to Dru (r ∈ R) is denoted by

V ′
r (DRu).

Acknowledgments. We thank the three anonymous referees for many com-
ments that led to significant improvement of this paper.

REFERENCES

[1] A. Abdulle, The finite element heterogeneous multiscale method: A computational strategy
for multiscale PDEs, in GAKUTO Internat. Ser. Math. Sci. Appl. 31, Gakkōtosho, Tokyo,
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