188 research outputs found

    Education in Process Systems Engineering: Why it matters more than ever and how it can be structured

    Get PDF
    This position paper is an outcome of discussions that took place at the third FIPSE Symposium in Rhodes, Greece, between June 20–22, 2016 (http://fi-in-pse.org). The FIPSE objective is to discuss open research challenges in topics of Process Systems Engineering (PSE). Here, we discuss the societal and industrial context in which systems thinking and Process Systems Engineering provide indispensable skills and tools for generating innovative solutions to complex problems. We further highlight the present and future challenges that require systems approaches and tools to address not only ‘grand’ challenges but any complex socio-technical challenge. The current state of Process Systems Engineering (PSE) education in the area of chemical and biochemical engineering is considered. We discuss approaches and content at both the unit learning level and at the curriculum level that will enhance the graduates’ capabilities to meet the future challenges they will be facing. PSE principles are important in their own right, but importantly they provide significant opportunities to aid the integration of learning in the basic and engineering sciences across the whole curriculum. This fact is crucial in curriculum design and implementation, such that our graduates benefit to the maximum extent from their learning

    Leveraging implementation science to reduce inequities in children’s mental health care: Highlights from a multidisciplinary international colloquium

    Get PDF
    Background and purposeAccess to evidence-based mental health care for children is an international priority. However, there are significant challenges to advancing this public health priority in an efficient and equitable manner. The purpose of this international colloquium was to convene a multidisciplinary group of health researchers to build an agenda for addressing disparities in mental health care access and treatment for children and families through collaboration among scholars from the United States and Europe engaged in innovative implementation science and mental health services research.Key highlightsGuided by the Exploration, Preparation, Implementation, and Sustainment (EPIS) Framework, presentations related to inner, outer, and bridging context factors that impact the accessibility and quality of mental health evidence-based practices (EBPs) for children and families. Three common topics emerged from the presentations and discussions from colloquium participants, which included: 1) the impact of inner and outer context factors that limit accessibility to EBPs across countries, 2) strategies to adapt EBPs to improve their fit in different settings, 3) the potential for implementation science to address emerging clinical and public health concerns.ImplicationsThe common topics discussed underscored that disparities in access to evidence-based mental health care are prevalent across countries. Opportunities for cross-country and cross-discipline learnings and collaborations can help drive solutions to address these inequities, which relate to the availability of a trained and culturally appropriate workforce, insurance reimbursement policies, and designing interventions and implementation strategies to support sustained use of evidence-based practices

    Improving the Characterization of Radiologically Isolated Syndrome Suggestive of Multiple Sclerosis

    Get PDF
    OBJECTIVE: To improve the characterization of asymptomatic subjects with brain magnetic resonance imaging (MRI) abnormalities highly suggestive of multiple sclerosis (MS), a condition named as "radiologically isolated syndrome" (RIS). METHODS: Quantitative MRI metrics such as brain volumes and magnetization transfer (MT) were assessed in 19 subjects previously classified as RIS, 20 demographically-matched relapsing-remitting MS (RRMS) patients and 20 healthy controls (HC). Specific measures were: white matter (WM) lesion volumes (LV), total and regional brain volumes, and MT ratio (MTr) in lesions, normal-appearing WM (NAWM) and cortex. RESULTS: LV was similar in RIS and RRMS, without differences in distribution and frequency at lesion mapping. Brain volumes were similarly lower in RRMS and RIS than in HC (p<0.001). Lesional-MTr was lower in RRMS than in RIS (p = 0.048); NAWM-MTr and cortical-MTr were similar in RIS and HC and lower (p<0.01) in RRMS. These values were particularly lower in RRMS than in RIS in the sensorimotor and memory networks. A multivariate logistic regression analysis showed that 13/19 RIS had ≥70% probability of being classified as RRMS on the basis of their brain volume and lesional-MTr values. CONCLUSIONS: Macroscopic brain damage was similar in RIS and RRMS. However, the subtle tissue damage detected by MTr was milder in RIS than in RRMS in clinically relevant brain regions, suggesting an explanation for the lack of clinical manifestations of subjects with RIS. This new approach could be useful for narrowing down the RIS individuals with a high risk of progression to MS

    The role of the amygdala in face perception and evaluation

    Get PDF
    Faces are one of the most significant social stimuli and the processes underlying face perception are at the intersection of cognition, affect, and motivation. Vision scientists have had a tremendous success of mapping the regions for perceptual analysis of faces in posterior cortex. Based on evidence from (a) single unit recording studies in monkeys and humans; (b) human functional localizer studies; and (c) meta-analyses of neuroimaging studies, I argue that faces automatically evoke responses not only in these regions but also in the amygdala. I also argue that (a) a key property of faces represented in the amygdala is their typicality; and (b) one of the functions of the amygdala is to bias attention to atypical faces, which are associated with higher uncertainty. This framework is consistent with a number of other amygdala findings not involving faces, suggesting a general account for the role of the amygdala in perception

    Dendritic Cell Based Tumor Vaccination in Prostate and Renal Cell Cancer: A Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND: More than 200 clinical trials have been performed using dendritic cells (DC) as cellular adjuvants in cancer. Yet the key question whether there is a link between immune and clinical response remains unanswered. Prostate and renal cell cancer (RCC) have been extensively studied for DC-based immunotherapeutic interventions and were therefore chosen to address the above question by means of a systematic review and meta-analysis. METHODOLOGY/PRINCIPAL FINDINGS: Data was obtained after a systematic literature search from clinical trials that enrolled at least 6 patients. Individual patient data meta-analysis was performed by means of conditional logistic regression grouped by study. Twenty nine trials involving a total of 906 patients were identified in prostate cancer (17) and RCC (12). Objective response rates were 7.7% in prostate cancer and 12.7% in RCC. The combined percentages of objective responses and stable diseases (SD) amounted to a clinical benefit rate (CBR) of 54% in prostate cancer and 48% in RCC. Meta-analysis of individual patient data (n = 403) revealed the cellular immune response to have a significant influence on CBR, both in prostate cancer (OR 10.6, 95% CI 2.5-44.1) and in RCC (OR 8.4, 95% CI 1.3-53.0). Furthermore, DC dose was found to have a significant influence on CBR in both entities. Finally, for the larger cohort of prostate cancer patients, an influence of DC maturity and DC subtype (density enriched versus monocyte derived DC) as well as access to draining lymph nodes on clinical outcome could be demonstrated. CONCLUSIONS/SIGNIFICANCE: As a 'proof of principle' a statistically significant effect of DC-mediated cellular immune response and of DC dose on CBR could be demonstrated. Further findings concerning vaccine composition, quality control, and the effect of DC maturation status are relevant for the immunological development of DC-based vaccines

    Physicochemical Characterization of Passive Films and Corrosion Layers by Differential Admittance and Photocurrent Spectroscopy

    Get PDF
    Two different electrochemical techniques, differential admittance and photocurrent spectroscopy, for the characterization of electronic and solid state properties of passive films and corrosion layers are described and critically evaluated. In order to get information on the electronic properties of passive film and corrosion layers as well as the necessary information to locate the characteristic energy levels of the passive film/electrolyte junction like: flat band potential (Ufb), conduction band edge (EC) or valence band edge (EV), a wide use of Mott-Schottky plots is usually reported in corrosion science and passivity studies. It has been shown, in several papers, that the use of simple M-S theory to get information on the electronic properties and energy levels location at the film/electrolyte interface can be seriously misleading and/or conflicting with the physical basis underlying the M-S theory. A critical appraisal of this approach to the study of very thin and thick anodic passive film grown on base-metals (Cr, Ni, Fe, SS etc..) or on valve metals (Ta, Nb, W etc..) is reported in this work, together with possible alternative approach to overcome some of the mentioned inconsistencies. At this aim the theory of amorphous semiconductor Schottky barrier, introduced several years ago in the study of passive film/electrolyte junction, is reviewed by taking into account some of the more recent results obtained by the present authors. Future developments of the theory appears necessary to get more exact quantitative information on the electronic properties of passive films, specially in the case of very thin film like those formed on base metals and their alloys. The second technique described in this chapter, devoted to the physico-chemical characterization of passive film and corrosion layers, is a more recent technique based on the analysis of the photo-electrochemical answer of passive film/electrolyte junction under illumination with photons having suitable energy. Such a technique usually referred to as Photocurrent Spectroscopy (PCS) has been developed on the basis of the large research effort carried out by several groups in the 1970’s and aimed to investigate the possible conversion of solar energy by means of electrochemical cells. In this work the fundamentals of semiconductor/electrolyte junctions under illumination will be highlighted both for crystalline and amorphous materials. The role of amorphous nature and film thickness on the photo-electrochemical answer of passive film/solution interface is reviewed as well the use of PCS for quantitative analysis of the film composition based on a semi-empirical correlation between optical band gap and difference of electronegativity of film constituents previously suggested by the present authors. In this frame the results of PCS studies on valve metal oxides and valve metal mixed oxides will be discussed in order to show the validity of the proposed method. The results of PCS studies aimed to get information on passive film composition and carried out by different authors on base metals (Fe, Cr, Ni) and their alloys, including stainless steel, will be also compared with compositional analysis carried out by well-established surface analysis techniques
    corecore