1,410 research outputs found

    End-to-End QoS Support for a Medical Grid Service Infrastructure

    No full text
    Quality of Service support is an important prerequisite for the adoption of Grid technologies for medical applications. The GEMSS Grid infrastructure addressed this issue by offering end-to-end QoS in the form of explicit timeliness guarantees for compute-intensive medical simulation services. Within GEMSS, parallel applications installed on clusters or other HPC hardware may be exposed as QoS-aware Grid services for which clients may dynamically negotiate QoS constraints with respect to response time and price using Service Level Agreements. The GEMSS infrastructure and middleware is based on standard Web services technology and relies on a reservation based approach to QoS coupled with application specific performance models. In this paper we present an overview of the GEMSS infrastructure, describe the available QoS and security mechanisms, and demonstrate the effectiveness of our methods with a Grid-enabled medical imaging service

    Short-coherence length superconductivity in the Attractive Hubbard Model in three dimensions

    Full text link
    We study the normal state and the superconducting transition in the Attractive Hubbard Model in three dimensions, using self-consistent diagrammatics. Our results for the self-consistent TT-matrix approximation are consistent with 3D-XY power-law critical scaling and finite-size scaling. This is in contrast to the exponential 2D-XY scaling the method was able to capture in our previous 2D calculation. We find the 3D transition temperature at quarter-filling and U=4tU=-4t to be Tc=0.207tT_c=0.207t. The 3D critical regime is much narrower than in 2D and the ratio of the mean-field transition to TcT_c is about 5 times smaller than in 2D. We also find that, for the parameters we consider, the pseudogap regime in 3D (as in 2D) coincides with the critical scaling regime.Comment: 4 pages, 5 figure

    An Efficient Algorithm for Optimizing Adaptive Quantum Metrology Processes

    Full text link
    Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and decoherence

    Ferromagnetism in the two dimensional t-t' Hubbard model at the Van Hove density

    Full text link
    Using an improved version of the projection quantum Monte Carlo technique, we study the square-lattice Hubbard model with nearest-neighbor hopping t and next-nearest-neighbor hopping t', by simulation of lattices with up to 20 X 20 sites. For a given R=2t'/t, we consider that filling which leads to a singular density of states of the noninteracting problem. For repulsive interactions, we find an itinerant ferromagnet (antiferromagnet) for R=0.94 (R=0.2). This is consistent with the prediction of the T-matrix approximation, which sums the most singular set of diagrams.Comment: 10 pages, RevTeX 3.0 + a single postscript file with all figure

    Numerical Evidence of Luttinger and Fermi Liquid Behaviour in the 2D Hubbard Model

    Full text link
    The two dimensional Hubbard model with a single spin-up electron interacting with a finite density of spin-down electrons is studied using the quantum Monte Carlotechnique, a new conjugate gradient method for the evaluation of the Edwards wavefunction ansatz, and the standard second order perturbation theory. We performed simulations up to 242 sites at U/t=4U/t=4 reaching the zero temperature properties with no ``fermion sign problem'' and found a surprisingly good accuracy of the Edwards wavefunction ansatz at low density or low doping. The conjugate gradient method was then applied to system up to 1922 sites and infinite UU for the Edwards state. Fermi liquid theory seems to remain stable in 2D for all cases studied with the exception of the half filling case where a ``Luttinger like behavior'' survives in the Hubbard model , yielding a vanishing quasiparticle weight in the thermodynamic limit.Comment: 10 pages + 4 pictures, RevTex, SISSA 121/93/CM/M

    Spin-Charge Separation, Anomalous Scaling and the Coherence of Hopping in exactly solved Two Chain Models

    Full text link
    The coherence of transport between two one-dimensional interacting Fermi liquids, coupled by single particle hopping and interchain interaction, is examined in the context of two exactly soluble models. It is found that the coherence of the inter-chain hopping depends on the interplay between inter-chain hopping and inter-chain interaction terms, and not simply on the ground state spectral properties of an isolated chain. Specifically, the splitting of levels in associated with interchain hopping in a g4g_4 soluble model is found to be enhanced by the introduction of interchain interaction. It is also shown that, for an exactly solvable model with both g2g_2 and g4g_4 interactions, coherent interchain hopping coexists with anomalous scaling and non-Fermi liquid behavior in the chain direction.Comment: Two postscript figure

    Density-induced BCS to Bose-Einstein crossover

    Get PDF
    We investigate the zero-temperature BCS to Bose-Einstein crossover at the mean-field level, by driving it with the attractive potential and the particle density.We emphasize specifically the role played by the particle density in this crossover.Three different interparticle potentials are considered for the continuum model in three spatial dimensions, while both s- and d-wave solutions are analyzed for the attractive (extended) Hubbard model on a two-dimensional square lattice. For this model the peculiar behavior of the crossover for the d-wave solution is discussed.In particular, in the strong-coupling limit when approaching half filling we evidence the occurrence of strong correlations among antiparallel-spin fermions belonging to different composite bosons, which give rise to a quasi-long-range antiferromagnetic order in this limit.Comment: 10 pages, 5 enclosed figure

    Decay of escherichia coli in soil following the application of biosolids to agricultural land

    Get PDF
    The decay of Escherichia coli in a sandy loam soil, amended with enhanced and conventionally treated biosolids, was investigated in a field experiment following spring and autumn applications of sewage sludge. Control soils, without the application of biosolids, were also examined to determine the background indigenous populations of E. coli which are present in the environment. The survival of indigenous E. coli and populations of E. coli applied to soil in biosolids, is assessed in relation to environmental factors influencing pathogen-decay processes in soil
    corecore