85 research outputs found

    ALK inhibition activates LC3B-independent, protective autophagy in EML4-ALK positive lung cancer cells.

    Get PDF
    ALK inhibitors effectively target EML4-ALK positive non-small cell lung cancer, but their effects are hampered by treatment resistance. In the present study, we asked whether ALK inhibition affects autophagy, and whether this may influence treatment response. Whereas the impact of targeted therapies on autophagic activity previously have been assessed by surrogate marker proteins such as LC3B, we here thoroughly examined effects on functional autophagic activity, i.e. on the sequestration and degradation of autophagic cargo, in addition to autophagic markers. Interestingly, the ALK inhibitor Ceritinib decreased mTOR activity and increased GFP-WIPI1 dot formation in H3122 and H2228 EML4-ALK <sup>+</sup> lung cancer cells, suggesting autophagy activation. Moreover, an mCherry-EGFP-LC3B based assay indicated elevated LC3B carrier flux upon ALK inhibition. In accordance, autophagic cargo sequestration and long-lived protein degradation significantly increased upon ALK inhibition. Intriguingly, autophagic cargo flux was dependent on VPS34 and ULK1, but not LC3B. Co-treating H3122 cells with Ceritinib and a VPS34 inhibitor or Bafilomycin A1 resulted in reduced cell numbers. Moreover, VPS34 inhibition reduced clonogenic recovery of Ceritinib-treated cells. In summary, our results indicate that ALK inhibition triggers LC3B-independent macroautophagic flux in EML4-ALK <sup>+</sup> cells to support cancer cell survival and clonogenic growth

    From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs.

    Get PDF
    Oxidative stress can alter the expression level of many microRNAs (miRNAs), but how these changes are integrated and related to oxidative stress responses is poorly understood. In this article, we addressed this question by using in silico tools. We reviewed the literature for miRNAs whose expression is altered upon oxidative stress damage and used them in combination with various databases and software to predict common gene targets of oxidative stress-modulated miRNAs and affected pathways. Furthermore, we identified miRNAs that simultaneously target the predicted oxidative stress-modulated miRNA gene targets. This generated a list of novel candidate miRNAs potentially involved in oxidative stress responses. By literature search and grouping of pathways and cellular responses, we could classify these candidate miRNAs and their targets into a larger scheme related to oxidative stress responses. To further exemplify the potential of our approach in free radical research, we used our explorative tools in combination with ingenuity pathway analysis to successfully identify new candidate miRNAs involved in the ubiquitination process, a master regulator of cellular responses to oxidative stress and proteostasis. Lastly, we demonstrate that our approach may also be useful to identify novel candidate connections between oxidative stress-related miRNAs and autophagy. In summary, our results indicate novel and important aspects with regard to the integrated biological roles of oxidative stress-modulated miRNAs and demonstrate how this type of in silico approach can be useful as a starting point to generate hypotheses and guide further research on the interrelation between miRNA-based gene regulation, oxidative stress signaling pathways, and autophagy

    A Novel Role of Listeria monocytogenes Membrane Vesicles in Inhibition of Autophagy and Cell Death

    Get PDF
    Bacterial membrane vesicle (MV) production has been mainly studied in Gram-negative species. In this study, we show that Listeria monocytogenes, a Gram-positive pathogen that causes the food-borne illness listeriosis, produces MVs both in vitro and in vivo. We found that a major virulence factor, the pore-forming hemolysin listeriolysin O (LLO), is tightly associated with the MVs, where it resides in an oxidized, inactive state. Previous studies have shown that LLO may induce cell death and autophagy. To monitor possible effects of LLO and MVs on autophagy, we performed assays for LC3 lipidation and LDH sequestration as well as analysis by confocal microscopy of HEK293 cells expressing GFP-LC3. The results revealed that MVs alone did not affect autophagy whereas they effectively abrogated autophagy induced by pure LLO or by another pore-forming toxin from Vibrio cholerae, VCC. Moreover, Listeria monocytogenes MVs significantly decreased Torin1-stimulated macroautophagy. In addition, MVs protected against necrosis of HEK293 cells caused by the lytic action of LLO. We explored the mechanisms of LLO-induced autophagy and cell death and demonstrated that the protective effect of MVs involves an inhibition of LLO-induced pore formation resulting in inhibition of autophagy and the lytic action on eukaryotic cells. Further, we determined that these MVs help bacteria to survive inside eukaryotic cells (mouse embryonic fibroblasts). Taken together, these findings suggest that intracellular release of MVs from L. monocytogenes may represent a bacterial strategy to survive inside host cells, by its control of LLO activity and by avoidance of destruction from the autophagy system during infection

    JNK interacting protein 1 (JIP-1) protects LNCaP prostate cancer cells from growth arrest and apoptosis mediated by 12-0-tetradecanoylphorbol-13-acetate (TPA)

    Get PDF
    12-0-tetradecanoylphorbol-13-acetate (TPA) stimulates protein kinase C (PKC) which mediates apoptosis in androgen-sensitive LNCaP human prostate cancer cells. The downstream signals of PKC that mediate TPA-induced apoptosis in LNCaP cells are unclear. In this study, we found that TPA activates the c-Jun NH2-terminal kinase (JNK)/c-Jun/AP-1 pathway. To explore the possible role that the JNK/c-Jun/AP-1 signal pathway has on TPA-induced apoptosis in LNCaP cells, we stably transfected the scaffold protein, JNK interacting protein 1 (JIP-1), which binds to JNK inhibiting its ability to phosphorylate c-Jun. TPA (10(-9)-10(-7) mol l(-1)) caused phosphorylation of JNK in both wild-type and JIP-1-transfected (LNCaP-JIP-1) cells. It resulted in phosphorylation and upregulation of expression of c-Jun protein in the wild-type LNCaP cells, but not in the JIP-1-transfected LNCaP cells. In addition, upregulation of AP-1 reporter activity by TPA (10(-9) mol l(-1)) occurred in LNCaP cells but was abrogated in LNCaP-JIP-1 cells. Thus, TPA stimulated c-Jun through JNK, and JIP-1 effectively blocked JNK. TPA (10(-12)-10(-8) mol l(-1)) treatment of LNCaP cells caused their growth inhibition, cell cycle arrest, upregulation of p53 and p21waf1, and induction of apoptosis. All of these effects were significantly attenuated when LNCaP-JIP-1 cells were similarly treated with TPA. A previous study showed that c-Jun/AP-1 blocked androgen receptor (AR) signaling by inhibiting AR binding to AR response elements (AREs) of target genes including prostate-specific antigen (PSA). Therefore, we hypothesised that TPA would not be able to disrupt the AR signal pathway in LNCaP-JIP-1 cells. Contrary to expectation, TPA (10(-9)-10(-8) mol l(-1)) inhibited DHT-induced AREs reporter activity and decreased levels of PSA in the LNCaP-JIP-1 cells. Taken together, TPA, probably by stimulation of PKC, phosphorylates JNK, which phosphorylates and increases expression of c-Jun leading to AP-1 activity. Growth control of prostate cancer cells can be mediated through the JNK/c-Jun pathway, but androgen responsiveness of these cells can be independent of this pathway, suggesting that androgen independence in progressive prostate cancer may not occur through activation of this pathway

    p27 Deficiency Cooperates with Bcl-2 but Not Bax to Promote T-Cell Lymphoma

    Get PDF
    The effect of Bcl-2 on oncogenesis is complex and expression may either delay or accelerate oncogenesis. The pro-oncogenic activity is attributed to its well characterized anti-apoptotic function while the anti-oncogenic function has been attributed to its inhibition of cellular proliferation. Recent studies demonstrate that p27 may mediate the effects of Bcl-2 on cellular proliferation. We hypothesized that p27 may suppress tumor formation by Bcl-2 family members. To test this hypothesis, cell cycle inhibition and lymphoma development were examined in Lck-Bcl-2 and Lck-Bax38/1 transgenic mice deficient in p27. Strikingly, p27 deficiency synergistically cooperates with Bcl-2 to increase T cell hyperplasia and development of spontaneous T cell lymphomas. Within 1 year, >90% of these mice had developed thymic T cell lymphomas. This high penetrance contrasts with a one year incidence of <5% of thymic lymphoma in Lck-Bcl-2 or p27 −/− mice alone. In contrast, p27 deficiency had no effect on tumor formation in Lck-Bax38/1 transgenic mice, another model of T cell lymphoma. Histologically the lymphomas in p27 −/− Lck-Bcl-2 mice are lymphoblastic and frequently involve multiple organs suggesting an aggressive phenotype. Interestingly, in mature splenic T cells, Bcl-2 largely retains its anti-proliferative function even in the absence of p27. T cells from p27 −/− Lck-Bcl-2 mice show delayed kinetics of CDK2 Thr-160 phosphorylation. This delay is associated with a delay in the up regulation of both Cyclin D2 and D3. These data demonstrate a complex relationship between the Bcl-2 family, cellular proliferation, and oncogenesis and demonstrate that p27 up-regulation is not singularly important in the proliferative delay observed in T cells expressing Bcl-2 family members. Nonetheless, the results indicate that p27 is a critical tumor suppressor in the context of Bcl-2 expression

    Social Relationships and Mortality Risk: A Meta-analytic Review

    Get PDF
    In a meta-analysis, Julianne Holt-Lunstad and colleagues find that individuals' social relationships have as much influence on mortality risk as other well-established risk factors for mortality, such as smoking
    corecore