7,758 research outputs found
An improved dual-frequency technique for the remote sensing of ocean currents and wave spectra
A two frequency microwave radar technique for the remote sensing of directional ocean wave spectra and surface currents is investigated. This technique is conceptually attractive because its operational physical principle involves a spatial electromagnetic scattering resonance with a single, but selectable, long gravity wave. Multiplexing of signals having different spacing of the two transmitted frequencies allows measurements of the entire long wave ocean spectrum to be carried out. A new scatterometer is developed and experimentally tested which is capable of making measurements having much larger signal/background values than previously possible. This instrument couples the resonance technique with coherent, frequency agility radar capabilities. This scatterometer is presently configured for supporting a program of surface current measurements
Numerical modelling of heat generated by electroosmotic flows in micro-channels
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.In this paper, numerical modeling of Joule heating in electroosmotic flows is described in some detail. The finite element method is used for the spatial discretization along with the characteristic based split (CBS) time discretization. A new non-dimensional scaling is also introduced. In addition to standard problems of micro channel flows, flow and heat generation in a T-mixer are also discussed in this paper
Unconventional Hall effect in oriented CaCoO thin films
Transport properties of the good thermoelectric misfit oxide
CaCoO are examined. In-plane resistivity and Hall resistance
measurements were made on epitaxial thin films which were grown on {\it c}-cut
sapphire substrates using the pulsed laser deposition technique. Interpretation
of the in-plane transport experiments relates the substrate-induced strain in
the resulting film to single crystals under very high pressure ( 5.5 GPa)
consistent with a key role of strong electronic correlation. They are confirmed
by the measured high temperature maxima in both resistivity and Hall
resistance. While hole-like charge carriers are inferred from the Hall effect
measurements over the whole investigated temperature range, the Hall resistance
reveals a non monotonic behavior at low temperatures that could be interpreted
with an anomalous contribution. The resulting unconventional temperature
dependence of the Hall resistance seems thus to combine high temperature
strongly correlated features above 340 K and anomalous Hall effect at low
temperature, below 100 K.Comment: Submitted to Physical Review B (2005
Coverage-dependent adsorption sites for K/Cu(001) and Cs/Cu(001) determined by surface X-ray diffraction
Surface X-ray diffraction has been used to analyze in situ the room-temperature adsorption behaviour and the structure of K and Cs on Cu(100) at submonolayer coverages. Adsorption of K takes place in fourfold hollow sites up to coverages of about 0.25 monolayers (ML), where 1 ML corresponds to 1.53 × 1015 atoms/cm2. At higher coverages the formation of a quasi-hexagonal incommensurate adlayer is observed. In contrast, for Cs adsorption we observe from the very beginning the formation of the quasi-hexagonal structure up to the completion of the adlayer at about 0.30 ML. For K adsorption in the hollow sites we determine an adsorption height, d = 2.25(15) Å, corresponding to an effective K radius of reff = 1.6(1) Å close to the ionic radius of 1.33 Å. We do not observe a change in the effective radius as a function of coverage. For the quasi-hexagonal Cs structure we find an (average) adsorption height d = 2.94 Å corresponding to an effective radius of reff = 2.18 and 1.93 Å, for the limiting ca hollow- and bridge-site adsorption, respectively. The analysis of the superlattice reflections corresponding to the quasi-hexagonal incommensurate structures indicated that the K adlayer is strongly modulated. The first Fourier component of the substrate-induced modulation was determined to u01 = 1.29(3) Å. In contrast, for Cs/Cu(001) static modulation is much less important (u01 0.2 Å). Variation of the Cs adlayer density by changing the substrate temperature allows continuous expansion and contraction of the adsorbate unit cell. No commensurate-incommensurate transition has been observed
An information adaptive system study report and development plan
The purpose of the information adaptive system (IAS) study was to determine how some selected Earth resource applications may be processed onboard a spacecraft and to provide a detailed preliminary IAS design for these applications. Detailed investigations of a number of applications were conducted with regard to IAS and three were selected for further analysis. Areas of future research and development include algorithmic specifications, system design specifications, and IAS recommended time lines
Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathodoluminescence
A new technique for determining carrier diffusion lengths by cathodoluminescence measurements is presented. The technique is extremely accurate and can be applied to a variety of structures. Ambipolar diffusion lengths are determined for GaAs quantum well material, bulk GaAs, Al0.21Ga0.79As, and Al0.37Ga0.63As. A large increase in the diffusion length is found for Al0.37Ga0.63As and is attributed to an order of magnitude increase in lifetime
Coverage dependent adsorption sites in the K/Cu(001) system: A crystal truncation rod analysis
A novel technique for the direct determination of carrier diffusion lengths in GaAs/AlGaAs heterostructures using cathodoluminescence
A new technique for determining carrier diffusion lengths
in direct gap semiconductors by cathodoluminescence measurement
is presented. Ambipolar diffusion lengths are
determined for GaAs quantum well material, bulk GaAs,
and Al_xGa_(1-x)As with x up to 0.38. A large increase in
the diffusion length is found as x approaches 0.38 and is
attributed to an order of magnitude increase in lifetime
- …
