57 research outputs found

    Introduction: Revisiting the Negrito Hypothesis: A Transdisciplinary Approach to Human Prehistory in Southeast Asia

    Get PDF
    The negrito hypothesis predicts that a shared phenotype among various contemporary groups of hunter-gatherers in Southeast Asia - dark skin, short stature, tight curly hair - is due to common descent from a region-wide, pre-Neolithic substrate of humanity. The alternative is that their distinctive phenotype results from convergent evolution. The core issues of the negrito hypothesis are today more relevant than ever to studies of human evolution, including the out-of-Africa migration, admixture with Denisovans, and the effects of environment and ecology on life-history traits. Understanding the current distribution of the negrito phenotype dictates a wide-ranging remit for study, including the articulation of the relationship between foragers and farmers in the present, the development of settled agriculture in the mid-Holocene, and terminal Pleistocene population expansions. The consensus reached by the contributors to this special double issue of Human Biology is that there is not yet conclusive evidence either for or against the negrito hypothesis. Nevertheless, the process of revisiting the problem will benefit the knowledge of the human prehistory of Southeast Asia. Whether the term negrito accurately reflects the all-encompassing nature of the resulting inquiry is in itself questionable, but the publication of this double issue is testament to the enduring ability of this hypothesis to unite disparate academic disciplines in a common purpose

    The Andaman Islanders in a Regional Genetic Context: Reexamining the Evidence for an Early Peopling of the Archipelago from South Asia

    Get PDF
    The indigenous inhabitants of the Andaman Islands were considered by many early anthropologists to be pristine examples of a negrito substrate of humanity that existed throughout Southeast Asia. Despite over 150 years of research and study, questions over the extent of shared ancestry between Andaman Islanders and other small-bodied, gracile, dark-skinned populations throughout the region are still unresolved. This shared phenotype could be a product of shared history, evolutionary convergence, or a mixture of both. Recent population genetic studies have tended to emphasize long-term physical isolation of the Andaman Islanders and an affinity to ancestral populations of South Asia. We reexamine the genetic evidence from genome-wide autosomal single-nucleotide polymorphism (SNP) data for a shared history between the tribes of Little Andaman (Onge) and Great Andaman, and between these two groups and the rest of South and Southeast Asia (both negrito and non-negrito groups)

    Preferential access to genetic information from endogenous hominin ancient DNA and accurate quantitative SNP-typing via SPEX

    Get PDF
    The analysis of targeted genetic loci from ancient, forensic and clinical samples is usually built upon polymerase chain reaction (PCR)-generated sequence data. However, many studies have shown that PCR amplification from poor-quality DNA templates can create sequence artefacts at significant levels. With hominin (human and other hominid) samples, the pervasive presence of highly PCR-amplifiable human DNA contaminants in the vast majority of samples can lead to the creation of recombinant hybrids and other non-authentic artefacts. The resulting PCR-generated sequences can then be difficult, if not impossible, to authenticate. In contrast, single primer extension (SPEX)-based approaches can genotype single nucleotide polymorphisms from ancient fragments of DNA as accurately as modern DNA. A single SPEX-type assay can amplify just one of the duplex DNA strands at target loci and generate a multi-fold depth-of-coverage, with non-authentic recombinant hybrids reduced to undetectable levels. Crucially, SPEX-type approaches can preferentially access genetic information from damaged and degraded endogenous ancient DNA templates over modern human DNA contaminants. The development of SPEX-type assays offers the potential for highly accurate, quantitative genotyping from ancient hominin samples

    Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans

    Get PDF
    BACKGROUND:Recent advances in the understanding of the maternal and paternal heritage of south and southwest Asian populations have highlighted their role in the colonization of Eurasia by anatomically modern humans. Further understanding requires a deeper insight into the topology of the branches of the Indian mtDNA phylogenetic tree, which should be contextualized within the phylogeography of the neighboring regional mtDNA variation. Accordingly, we have analyzed mtDNA control and coding region variation in 796 Indian (including both tribal and caste populations from different parts of India) and 436 Iranian mtDNAs. The results were integrated and analyzed together with published data from South, Southeast Asia and West Eurasia.RESULTS:Four new Indian-specific haplogroup M sub-clades were defined. These, in combination with two previously described haplogroups, encompass approximately one third of the haplogroup M mtDNAs in India. Their phylogeography and spread among different linguistic phyla and social strata was investigated in detail. Furthermore, the analysis of the Iranian mtDNA pool revealed patterns of limited reciprocal gene flow between Iran and the Indian sub-continent and allowed the identification of different assemblies of shared mtDNA sub-clades.CONCLUSIONS:Since the initial peopling of South and West Asia by anatomically modern humans, when this region may well have provided the initial settlers who colonized much of the rest of Eurasia, the gene flow in and out of India of the maternally transmitted mtDNA has been surprisingly limited. Specifically, our analysis of the mtDNA haplogroups, which are shared between Indian and Iranian populations and exhibit coalescence ages corresponding to around the early Upper Paleolithic, indicates that they are present in India largely as Indian-specific sub-lineages. In contrast, other ancient Indian-specific variants of M and R are very rare outside the sub-continent.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Multiplexed SNP Typing of Ancient DNA Clarifies the Origin of Andaman mtDNA Haplogroups amongst South Asian Tribal Populations

    Get PDF
    The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups ∼30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity

    Origin and spread of human mitochondrial DNA haplogroup U7

    Get PDF
    Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16–19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that – analysed alongside 100 published ones – enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region

    Ancient mitochondrial DNA sequence and SNP data from Andaman and Nicobar museum samples

    No full text
    To reconstruct the maternal demographic history of the populations of the Andaman and Nicobar archipelagos using genetic profiles obtained from colonial era skeletal material and hair collections. The project had two main technical arms: to obtain authentic DNA data from well-handled museum collections of human material, which were a priori presumed to be heavily contaminated; to use the data to fill in lacuna in the genetic landscape left by large-scale demographic decline caused by disease and social disruption associated with the modern era. The major aim of the interpretative phase of the project was to obtain realistic estimates for the date of settlement of these island groups based on genetics because of the absence of reliable archaeological evidence. The main aim of this research was to determine whether the Andaman islanders were part of a very early radiation from Africa or arrived to their archipelago much later. The Nicobars were included in the research to have a comparative data set from the same region from people with a different phenotype. The data set is comprised of mitochondrial DNA control region sequences and coding region Single Nucleotide Polymorphisms
    corecore