173 research outputs found
Federating distributed clinical data for the prediction of adverse hypotensive events
The ability to predict adverse hypotensive events, where a patient's arterial blood pressure drops to abnormally low (and dangerous) levels, would be of major benefit to the fields of primary and secondary health care, and especially to the traumatic brain injury domain. A wealth of data exist in health care systems providing information on the major health indicators of patients in hospitals (blood pressure, temperature, heart rate, etc.). It is believed that if enough of these data could be drawn together and analysed in a systematic way, then a system could be built that will trigger an alarm predicting the onset of a hypotensive event over a useful time scale, e.g. half an hour in advance. In such circumstances, avoidance measures can be taken to prevent such events arising. This is the basis for the Avert-IT project (http://www.avert-it.org), a collaborative EU-funded project involving the construction of a hypotension alarm system exploiting Bayesian neural networks using techniques of data federation to bring together the relevant information for study and system development
The brain monitoring with information technology (BrainIT) collaborative network: EC feasibility study results
The BrainIT group works collaboratively on developing standards for collection and analyses of data from brain injured patients towards providing a more efficient infrastructure for assessing new health technology. Materials and methods Over a 2 year period, core dataset data (grouped by nine categories) were collected from 200 head-injured patients by local nursing staff. Data were uploaded by the BrainIT web and random samples of received data were selected automatically by computer for validation by data validation (DV) research nurse staff against gold standard sources held in the local centre. Validated data was compared with original data sent and percentage error rates calculated by data category. Findings Comparisons, 19,461, were made in proportion to the size of the data received with the largest number checked in laboratory data (5,667) and the least in the surgery data (567). Error rates were generally less than or equal to 6%, the exception being the surgery data class where an unacceptably high error rate of 34% was found.
Conclusions The BrainIT core dataset (with the exception of the surgery classification) is feasible and accurate to collect. The surgery classification needs to be revised
Family history of cancer as a risk factor for second malignancies after Hodgkin's lymphoma
This study estimated the risk of second primary malignancies after Hodgkin's lymphoma (HL) in relation to family history of cancer, age at diagnosis and latency, among 6946 patients treated for HL in Sweden in 1965–1995 identified through the Swedish Cancer Register (SCR). First-degree relatives (FDRs) to the HL patients and their malignancies were then ascertained together with their malignancies through the Multi-Generation Registry and SCR. The HL patient cohort was stratified on the number of FDRs with cancer, and standardised incidence ratios (SIRs) of developing SM were analysed. In the HL cohort, 781 SM were observed 1 year or longer after HL diagnosis. The risk for developing SM increased with the number of FDRs with cancer, SIRs being 2.26, 3.01, and 3.45 with 0, 1, or ⩾2 FDRs with cancer, respectively. Hodgkin's lymphoma long-term survivors treated at a young age with a family history of cancer carry an increased risk for developing SM and may represent a subgroup where standardised screening for the most common cancer sites could be offered in a stringent surveillance programme
Analyses of cerebral microdialysis in patients with traumatic brain injury: relations to intracranial pressure, cerebral perfusion pressure and catheter placement
<p>Abstract</p> <p>Background</p> <p>Cerebral microdialysis (MD) is used to monitor local brain chemistry of patients with traumatic brain injury (TBI). Despite an extensive literature on cerebral MD in the clinical setting, it remains unclear how individual levels of real-time MD data are to be interpreted. Intracranial pressure (ICP) and cerebral perfusion pressure (CPP) are important continuous brain monitors in neurointensive care. They are used as surrogate monitors of cerebral blood flow and have an established relation to outcome. The purpose of this study was to investigate the relations between MD parameters and ICP and/or CPP in patients with TBI.</p> <p>Methods</p> <p>Cerebral MD, ICP and CPP were monitored in 90 patients with TBI. Data were extensively analyzed, using over 7,350 samples of complete (hourly) MD data sets (glucose, lactate, pyruvate and glycerol) to seek representations of ICP, CPP and MD that were best correlated. MD catheter positions were located on computed tomography scans as pericontusional or nonpericontusional. MD markers were analyzed for correlations to ICP and CPP using time series regression analysis, mixed effects models and nonlinear (artificial neural networks) computer-based pattern recognition methods.</p> <p>Results</p> <p>Despite much data indicating highly perturbed metabolism, MD shows weak correlations to ICP and CPP. In contrast, the autocorrelation of MD is high for all markers, even at up to 30 future hours. Consequently, subject identity alone explains 52% to 75% of MD marker variance. This indicates that the dominant metabolic processes monitored with MD are long-term, spanning days or longer. In comparison, short-term (differenced or Δ) changes of MD vs. CPP are significantly correlated in pericontusional locations, but with less than 1% explained variance. Moreover, CPP and ICP were significantly related to outcome based on Glasgow Outcome Scale scores, while no significant relations were found between outcome and MD.</p> <p>Conclusions</p> <p>The multitude of highly perturbed local chemistry seen with MD in patients with TBI predominately represents long-term metabolic patterns and is weakly correlated to ICP and CPP. This suggests that disturbances other than pressure and/or flow have a dominant influence on MD levels in patients with TBI.</p
Follow-up of patients with curatively resected colorectal cancer: a practice guideline
BACKGROUND: A systematic review was conducted to evaluate the literature regarding the impact of follow-up on colorectal cancer patient survival and, in a second phase, recommendations were developed. METHODS: The MEDLINE, CANCERLIT, and Cochrane Library databases, and abstracts published in the 1997 to 2002 proceedings of the annual meeting of the American Society of Clinical Oncology were systematically searched for evidence. Study selection was limited to randomized trials and meta-analyses that examined different programs of follow-up after curative resection of colorectal cancer where five-year overall survival was reported. External review by Ontario practitioners was obtained through a mailed survey. Final approval of the practice guideline report was obtained from the Practice Guidelines Coordinating Committee. RESULTS: Six randomized trials and two published meta-analyses of follow-up were obtained. Of six randomized trials comparing one follow-up program to a more intense program, only two individual trials detected a statistically significant survival benefit favouring the more intense follow-up program. Pooling of all six randomized trials demonstrated a significant improvement in survival favouring more intense follow-up (Relative Risk Ratio 0.80 (95%CI, 0.70 to 0.91; p = 0.0008). Although the rate of recurrence was similar in both of the follow-up groups compared, asymptomatic recurrences and re-operations for cure of recurrences were more common in patients with more intensive follow-up. Trials including CEA monitoring and liver imaging also had significant results, whereas trials not including these tests did not. CONCLUSION: Follow-up programs for patients with curatively resected colorectal cancer do improve survival. These follow-up programs include frequent visits and performance of blood CEA, chest x-rays, liver imaging and colonoscopy, however, it is not clear which tests or frequency of visits is optimal. There is a suggestion that improved survival is due to diagnosis of recurrence at an earlier, asymptomatic stage which allows for more curative resection of recurrence. Based on this evidence and consideration of the biology of colorectal cancer and present practices, a guideline was developed. Patients should be made aware of the risk of disease recurrence or second bowel cancer, the potential benefits of follow-up and the uncertainties requiring further clinical trials. For patients at high-risk of recurrence (stages IIb and III) clinical assessment is recommended when symptoms occur or at least every 6 months the first 3 years and yearly for at least 5 years. At the time of those visits, patients may have blood CEA, chest x-ray and liver imaging. For patients at lower risk of recurrence (stages I and Ia) or those with co-morbidities impairing future surgery, only visits yearly or when symptoms occur. All patients should have a colonoscopy before or within 6 months of initial surgery, and repeated yearly if villous or tubular adenomas >1 cm are found; otherwise repeat every 3 to 5 years. All patients having recurrences should be assessed by a multidisciplinary team in a cancer centre
Consensus statement from the 2014 International Microdialysis Forum.
Microdialysis enables the chemistry of the extracellular interstitial space to be monitored. Use of this technique in patients with acute brain injury has increased our understanding of the pathophysiology of several acute neurological disorders. In 2004, a consensus document on the clinical application of cerebral microdialysis was published. Since then, there have been significant advances in the clinical use of microdialysis in neurocritical care. The objective of this review is to report on the International Microdialysis Forum held in Cambridge, UK, in April 2014 and to produce a revised and updated consensus statement about its clinical use including technique, data interpretation, relationship with outcome, role in guiding therapy in neurocritical care and research applications.We gratefully acknowledge financial support for participants as follows: P.J.H. - National Institute for Health Research (NIHR) Professorship and the NIHR Biomedical Research Centre, Cambridge; I.J. – Medical Research Council (G1002277 ID 98489); A. H. - Medical Research Council, Royal College of Surgeons of England; K.L.H.C. - NIHR Biomedical Research Centre, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme); M.G.B. - Wellcome Trust Dept Health Healthcare Innovation Challenge Fund (HICF-0510-080); L. H. - The Swedish Research Council, VINNOVA and Uppsala Berzelii Technology Centre for Neurodiagnostics; S. M. - Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico; D.K.M. - NIHR Senior Investigator Award to D.K.M., NIHR Cambridge Biomedical Research Centre (Neuroscience Theme), FP7 Program of the European Union; M. O. - Swiss National Science Foundation and the Novartis Foundation for Biomedical Research; J.S. - Fondo de Investigación Sanitaria (Instituto de Salud Carlos III) (PI11/00700) co-financed by the European Regional Development; M.S. – NIHR University College London Hospitals Biomedical Research Centre; N. S. - Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00134-015-3930-
Metamorphosis of Subarachnoid Hemorrhage Research: from Delayed Vasospasm to Early Brain Injury
Delayed vasospasm that develops 3–7 days after aneurysmal subarachnoid hemorrhage (SAH) has traditionally been considered the most important determinant of delayed ischemic injury and poor outcome. Consequently, most therapies against delayed ischemic injury are directed towards reducing the incidence of vasospasm. The clinical trials based on this strategy, however, have so far claimed limited success; the incidence of vasospasm is reduced without reduction in delayed ischemic injury or improvement in the long-term outcome. This fact has shifted research interest to the early brain injury (first 72 h) evoked by SAH. In recent years, several pathological mechanisms that activate within minutes after the initial bleed and lead to early brain injury are identified. In addition, it is found that many of these mechanisms evolve with time and participate in the pathogenesis of delayed ischemic injury and poor outcome. Therefore, a therapy or therapies focused on these early mechanisms may not only prevent the early brain injury but may also help reduce the intensity of later developing neurological complications. This manuscript reviews the pathological mechanisms of early brain injury after SAH and summarizes the status of current therapies
Pediatric T- and NK-cell lymphomas: new biologic insights and treatment strategies
T- and natural killer (NK)-cell lymphomas are challenging childhood neoplasms. These cancers have varying presentations, vast molecular heterogeneity, and several are quite unusual in the West, creating diagnostic challenges. Over 20 distinct T- and NK-cell neoplasms are recognized by the 2008 World Health Organization classification, demonstrating the diversity and potential complexity of these cases. In pediatric populations, selection of optimal therapy poses an additional quandary, as most of these malignancies have not been studied in large randomized clinical trials. Despite their rarity, exciting molecular discoveries are yielding insights into these clinicopathologic entities, improving the accuracy of our diagnoses of these cancers, and expanding our ability to effectively treat them, including the use of new targeted therapies. Here, we summarize this fascinating group of lymphomas, with particular attention to the three most common subtypes: T-lymphoblastic lymphoma, anaplastic large cell lymphoma, and peripheral T-cell lymphoma-not otherwise specified. We highlight recent findings regarding their molecular etiologies, new biologic markers, and cutting-edge therapeutic strategies applied to this intriguing class of neoplasms
Tumor-activated lymph node fibroblasts suppress T cell function in diffuse large B cell lymphoma
Recent transcriptomic-based analysis of diffuse large B cell lymphoma (DLBCL) has highlighted the clinical relevance of LN fibroblast and tumor-infiltrating lymphocyte (TIL) signatures within the tumor microenvironment (TME). However, the immunomodulatory role of fibroblasts in lymphoma remains unclear. Here, by studying human and mouse DLBCL-LNs, we identified the presence of an aberrantly remodeled fibroblastic reticular cell (FRC) network expressing elevated fibroblast-activated protein (FAP). RNA-Seq analyses revealed that exposure to DLBCL reprogrammed key immunoregulatory pathways in FRCs, including a switch from homeostatic to inflammatory chemokine expression and elevated antigen-presentation molecules. Functional assays showed that DLBCL-activated FRCs (DLBCL-FRCs) hindered optimal TIL and chimeric antigen receptor (CAR) T cell migration. Moreover, DLBCL-FRCs inhibited CD8+ TIL cytotoxicity in an antigen-specific manner. Notably, the interrogation of patient LNs with imaging mass cytometry identified distinct environments differing in their CD8+ TIL-FRC composition and spatial organization that associated with survival outcomes. We further demonstrated the potential to target inhibitory FRCs to rejuvenate interacting TILs. Cotreating organotypic cultures with FAP-targeted immunostimulatory drugs and a bispecific antibody (glofitamab) augmented antilymphoma TIL cytotoxicity. Our study reveals an immunosuppressive role of FRCs in DLBCL, with implications for immune evasion, disease pathogenesis, and optimizing immunotherapy for patients
- …