127 research outputs found

    Pengaruh Kerapatan Bulu Daun pada Tanaman Kapas terhadap Kolonisasi Bemisia Tabaci Gennadius

    Full text link
    Ketahanan tanaman terhadap serangga hama berdasarkan karaktermorfologi bulu (trichom) pada daun merupakan salah satu cara potensialmengurangi penggunaan insektisida kimia dalam pengendalian hama.Serangga hama pengisap Bemisia tabaci pada tanaman kapas juga dapatdikendalikan dengan menggunakan varietas kapas resisten berdasarkankarakter morfologi bulu daun. Penelitian peranan kerapatan bulu daunpada tanaman kapas terhadap kolonisasi B. tabaci Gennadius dilakukan diKebun Percobaan Pasirian, Kabupaten Lumajang, dan di LaboratoriumEntomologi Balai Penelitian Tanaman Tembakau dan Serat Malang, mulaiApril hingga Juli 2005. Tujuan penelitian adalah untuk mengetahuiperanan kerapatan bulu daun pada beberapa aksesi plasma nutfah kapasterhadap kolonisasi B. tabaci. Perlakuan terdiri atas 11 aksesi plasmanutfah kapas yang dipilih berdasarkan penilaian visual pada karakterkerapatan bulu daun yang mewakili kerapatan bulu rendah hingga tinggi,yaitu: (1) KK-3 (KI 638), (2) Kanesia 1 (KI 436), (3) A/35 Reba P 279 (KI257), (4) Acala 1517 (KI 174), (5) Asembagus 5/A/1 (KI 162), (6) 619-998xLGS-10-77-3-1 (KI 76), (7) DP Acala 90 (KI 23), (8) TAMCOT SP21 (KI 6)), (9) Kanesia 8 (KI 677), (10) CTX-8 (KI 494), dan (11) CTX-1(KI 487). Penelitian disusun dalam rancangan acak lengkap (RAL) dengan10 ulangan. Paramater yang diamati adalah jumlah bulu daun, telur dannimfa pada 1 cm2 luas daun, serta jumlah imago B. tabaci pada daunketiga dari atas tanaman. Hasil penelitian menunjukkan bahwa kerapatanbulu daun berkorelasi positif dengan kolonisasi B. tabaci (R=0,9701).Semakin tinggi kerapatan bulu daun, semakin meningkat kolonisasi B.tabaci. Kolonisasi B. tabaci lebih tinggi pada CTX-1, CTX-8, Kanesia 8,dan KK-3 (150-250 individu/cm 2 luas daun) karena tingkat kerapatan buludaun juga lebih tinggi (150-300 helai/cm 2 luas daun) dibanding TAMCOTSP 21, DP Acala 90, 619-998xLGS-10-77-3-1, Asembagus 5/A/1, Acala1517, A/35 Reba P 279, dan Kanesia 1 yang memiliki kerapatan bulu daun(0-100 helai/cm 2 luas daun) dan tingkat kolonisasi B. tabaci (<100individu/cm 2 luas daun) lebih rendah

    MANAGEMENT OF GENITAL WARTS THROUGH AYURVEDA-A CASE REPORT

    Get PDF
    External genital warts or Condyloma Acuminata is caused by the Human Papilloma Virus subtypes 6 and 11. According to Ayurveda it can be diagnosed as Yoni Arsa. This case report presents a 51 yr old female with the complaints of per vaginal discharge, itching and appearance of progressively increasing number of lesions in the vulva for 6 months. The pathological diagnosis of the vulvar lesion specimen was Condyloma Acuminata. Patient was treated with internal administration and external application of Ayurvedic medicines. Considerable relief for the condition was noted and the follow up visits confirmed the non recurrence of the disease. Ayurvedic interventions can be considered as minimal invasive and cost effective in the management of genital warts

    Perbedaan Salinitas dengan Pakan Alami Kombinasi terhadap Pertumbuhan Diaphanosoma SP. di Balai Besar Pengembangan Budidaya Laut Lampung

    Get PDF
    Zooplankton dari ordo Cladocera yaitu Diaphanosoma sp. merupakan pakan alami yang baik bagi larva ikan dan udang. Untuk keperluan kultur selain faktorpakan, faktor lingkungan juga sangat penting dalam menunjang pertumbuhan dan perkembangannya. Salah satu faktor lingkungan yang mempengaruhi pertumbuhan Diaphanosoma sp. adalah salinitas. Diaphanosoma sp. mempunyai keterbatasan dalam toleransinya terhadap salinitas sehingga mempengaruhi pertumbuhan dan perkembangannya. Pakan alami yang banyak dimanfaatkan untuk budidaya Diaphanosoma sp. antara lain Tetraselmis sp., Nannochloropsis sp. dan Dunaliella sp. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh laju pertumbuhan Diaphanosoma sp. terhadap tingkat salinitas media dengan pemberian pakan alami kombinasi. Penelitian ini dilaksanakan di Laboratorium Pakan Hidup (Zooplankton) Balai Besar Pengembangan Budidaya Laut (BBPBL) Lampung pada bulan Januari sampai bulan Maret 2014. Rancangan percobaan yang digunakan adalah Rancangan Acak Lengkap (RAL) dengan 6 perlakuan dan 4 ulangan.Data dianalisis dengan analisis sidik ragam (ANOVA) dan diuji lanjut dengan UJI Beda Nyata Terkecil (BNT) pada taraf 5%. Hasil penelitian menunjukkan bahwa perlakuan yang terbaik adalah perlakuan P1 yaitu media salinitas 10 ppt menghasilkan kepadatan populasi Diaphanosoma sp. tertinggi sebesar 880 ind/l dan laju pertumbuhan populasinya sebesar 26,24%

    Interaction between the Triglyceride Lipase ATGL and the Arf1 Activator GBF1

    Get PDF
    The Arf1 exchange factor GBF1 (Golgi Brefeldin A resistance factor 1) and its effector COPI are required for delivery of ATGL (adipose triglyceride lipase) to lipid droplets (LDs). Using yeast two hybrid, co-immunoprecipitation in mammalian cells and direct protein binding approaches, we report here that GBF1 and ATGL interact directly and in cells, through multiple contact sites on each protein. The C-terminal region of ATGL interacts with N-terminal domains of GBF1, including the catalytic Sec7 domain, but not with full-length GBF1 or its entire N-terminus. The N-terminal lipase domain of ATGL (called the patatin domain) interacts with two C-terminal domains of GBF1, HDS (Homology downstream of Sec7) 1 and HDS2. These two domains of GBF1 localize to lipid droplets when expressed alone in cells, but not to the Golgi, unlike the full-length GBF1 protein, which localizes to both. We suggest that interaction of GBF1 with ATGL may be involved in the membrane trafficking pathway mediated by GBF1, Arf1 and COPI that contributes to the localization of ATGL to lipid droplets

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    Get PDF
    Modern humans have populated Europe for more than 45,000 years. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.Open access funding provided by Max Planck Society. This project has received funding by the European Research Council under the European Union’s Horizon 2020 research and innovation programme under grant agreements no. 803147-RESOLUTION (to S.T.), no. 771234-PALEoRIDER (to W.H.), no. 864358 (to K.M.), no. 724703 and no. 101019659 (to K.H.). K.H. is also supported by the Deutsche Forschungsgemeinschaft (DFG FOR 2237). E.A. has received funding from the Van de Kamp fonds. PACEA co-authors of this research benefited from the scientific framework of the University of Bordeaux’s IdEx Investments for the Future programme/GPR Human Past. A.G.-O. is supported by a Ramón y Cajal fellowship (RYC-2017-22558). L. Sineo, M.L. and D.C. have received funding from the Italian Ministry of University and Research (MUR) PRIN 2017 grants 20177PJ9XF and 20174BTC4R_002. H. Rougier received support from the College of Social and Behavioral Sciences of CSUN and the CSUN Competition for RSCA Awards. C.L.S. and T. Saupe received support from the European Union through the European Regional Development Fund (project no. 2014-2020.4.01.16-0030) and C.L.S. received support from the Estonian Research Council grant PUT (PRG243). S. Shnaider received support from the Russian Science Foundation (no. 19-78-10053).Peer reviewe
    • 

    corecore