48 research outputs found

    Automated tangential-flow diafiltration device

    Get PDF
    Tangential flow filtration (TFF) is a chemical unit operation used to purify and concentrate liquid suspensions of colloids, proteins, or cells. The solution flows tangentially across a membrane, such that a selective part of the fluid permeates the membrane while the filtrated matter is retained, increasing its concentration. TFF is a mild mechanical purification method that does not interact chemically with the filtrate. It is applied in sensitive separation tasks in protein chemistry, microbiology, or immunology. It is a fast alternative for dialysis applications, also applicable in the field of colloid purification. However, the costs of automated lab-scale devices (30,000 €) and the consumable membrane modules (100–600 €) make TFF currently hardly accessible for lab-scale polymer researchers. Therefore, we built a low-cost TFF system (2400 €) partly automated by an Arduino microcontroller and optimized for diafiltration buffer exchange and concentration processes in soft matter colloid research. We use medical hemodialysis membrane modules that only cost a share (20–50 €) of alternative TFF modules, and we demonstrate the functionality of the system for an exemplary colloidal microgel purification process

    Cloud Adoption in the Spotlight - Empirical Insights from German IT Experts

    Get PDF
    In comparison to traditional IT paradigms, cloud computing enables to obtain desired computing resources on-demand without requiring large, upfront investments and to dynamically adapt and scale these resources to varying business requirements. However, cloud computing is not a panacea. This drives the need to examine the specific reasons and requirements for cloud adoption in practice. In this paper, we take a twofold approach for this purpose. First of all, we follow an analytical approach by conducting a literature survey on existing adoption frameworks in order to analyze the complete life cycle of the adoption process and derive five hypotheses for cloud adoption. In the second step, we identify the major criteria that foster the adoption of cloud computing from the perspective of IT experts within an empirical study

    Long-lived heteronuclear spin-singlet states

    Full text link
    We report observation of long-lived spin-singlet states in a 13C-1H spin pair at zero magnetic field. In 13C-labeled formic acid, we observe spin-singlet lifetimes as long as 37 seconds, about a factor of three longer than the T1 lifetime of dipole polarization in the triplet state. We also observe that the lifetime of the singlet-triplet coherence, T2, is longer than T1. Moreover, we demonstrate that this singlet states formed by spins of a heteronucleus and a 1H nucleus, can exhibit longer lifetimes than the respective triplet states in systems consisting of more than two nuclear spins. Although long-lived homonuclear spin-singlet states have been extensively studied, this is the first experimental observation of analogous spin-singlets consisting of a heteronucleus and a proton.Comment: 5 pages, 4 figure

    Особенности литогеохимического состава прибрежных почв Томи и ее притоков

    Get PDF
    Signal Amplification by Reversible-Exchange (SABRE) is a method of hyperpolarizing substrates by polarization transfer from para-hydrogen without hydrogenation. Here, we demonstrate that this method can be applied to hyperpolarize small amounts of all proteinogenic amino acids and some chosen peptides down to the nanomole regime and can be detected in a single scan in low-magnetic fields down to 0.25 mT (10 kHz proton frequency). An outstanding feature is that depending on the chemical state of the used catalyst and the investigated amino acid or peptide, hyperpolarized hydrogen–deuterium gas is formed, which was detected with 1H and 2H NMR spectroscopy at low magnetic fields of B0 = 3.9 mT (166 kHz proton frequency) and 3.2 mT (20 kHz deuterium frequency)

    Singlet NMR methodology in two-spin-1/2 systems

    Full text link
    This paper discusses methodology developed over the past 12 years in order to access and manipulate singlet order in systems comprising two coupled spin-1/2 nuclei in liquid-state nuclear magnetic resonance. Pulse sequences that are valid for different regimes are discussed, and fully analytical proofs are given using different spin dynamics techniques that include product operator methods, the single transition operator formalism, and average Hamiltonian theory. Methods used to filter singlet order from byproducts of pulse sequences are also listed and discussed analytically. The theoretical maximum amplitudes of the transformations achieved by these techniques are reported, together with the results of numerical simulations performed using custom-built simulation code

    Long-lived heteronuclear spin-singlet states

    No full text
    corecore