CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh@SILP Catalyst
Authors
Alexis Bordet
Meike Emondts
Walter Leitner
Gilles Moos
Publication date
1 January 2020
Publisher
Weinheim : Wiley-VCH
Doi
Cite
Abstract
Rhodium nanoparticles immobilized on an acid-free triphenylphosphonium-based supported ionic liquid phase (Rh@SILP(Ph3-P-NTf2)) enabled the selective hydrogenation and hydrodeoxygenation of aromatic ketones. The flexible molecular approach used to assemble the individual catalyst components (SiO2, ionic liquid, nanoparticles) led to outstanding catalytic properties. In particular, intimate contact between the nanoparticles and the phosphonium ionic liquid is required for the deoxygenation reactivity. The Rh@SILP(Ph3-P-NTf2) catalyst was active for the hydrodeoxygenation of benzylic ketones under mild conditions, and the product distribution for non-benzylic ketones was controlled with high selectivity between the hydrogenated (alcohol) and hydrodeoxygenated (alkane) products by adjusting the reaction temperature. The versatile Rh@SILP(Ph3-P-NTf2) catalyst opens the way to the production of a wide range of high-value cyclohexane derivatives by the hydrogenation and/or hydrodeoxygenation of Friedel–Crafts acylation products and lignin-derived aromatic ketones. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Sustaining member
Repositorium für Naturwissenschaften und Technik (TIB Hannover)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:oa.tib.eu:123456789/6435
Last time updated on 23/07/2022