228 research outputs found

    Practical Synthesis of Unsymmetrical Tetraarylethylenes and Their Application for the Preparation of [Triphenylethylene−Spacer−Triphenylethylene] Triads

    Get PDF
    We have demonstrated that reactions of diphenylmethyllithium with a variety of substituted benzophenones produces corresponding tertiary alcohols that are easily dehydrated, without any need for purification, to produce various unsymmetrical and symmetrical tetraarylethylenes in excellent yields. The simplicity of the method allows for the preparation of a variety of ethylenic derivatives in multigram (10−50 g) quantities with great ease. The methodology was successfully employed for the preparation of various triphenylethylene (TPE)-based triads (i.e., TPE−spacer−TPE) containing polyphenylene and fluoranyl-based spacers. The ready availability of various substituted tetraarylethylenes allowed us to shed light on the effect of substituents on the oxidation potentials (Eox) of various tetraarylethylenes. Moreover, the electronic coupling among the triphenylethylene moieties in various TPE−spacer−TPE triads was briefly probed by electrochemical and optical methods

    A Demonstration of STIR-GATE-Connection

    Get PDF
    We present the first open-source version of STIR-GATE-Connection, a project that aims to provide an easy-to-use pipeline to simulate realistic PET data using GATE, followed by quantitative reconstruction using STIR. Monte Carlo simulations and image reconstruction are powerful research tools for emission tomography that can assist with the design of new medical imaging devices as well as the evaluation of novel image reconstruction algorithms and various correction techniques. STIR-GATE-Connection is a collection of scripts that aid with the: (i) setup of a realistic GATE simulation of a voxelised phantom using a user selected scanner configuration, (ii) conversion of the output list mode data into STIR compatible sinograms, and (iii) computation of additive and multiplicative data corrections for Poisson image reconstruction using STIR. In this work, we demonstrate example usage of these steps. A public release of STIR-GATE-Connection, licensed under the Apache 2.0 License, can be downloaded at: http://www.github.com/UCL/STIR-GATE-Connection

    AsaGEI2b: a new variant of a genomic island identified in the Aeromonas salmonicida subsp. salmonicida JF3224 strain isolated from a wild fish in Switzerland

    Get PDF
    Aeromonas salmonicida subsp. salmonicida is the causal agent of furunculosis in salmonids. We recently identified a group of genomic islands (AsaGEI) in this bacterium. AsaGEI2a, one of these genomic islands, has almost exclusively been identified in isolates from North America. To date, Aeromonas salmonicida subsp. salmonicida JF3224, a strain isolated from a wild brown trout (Salmo trutta) caught in Switzerland, was the only European isolate that appeared to bear AsaGEI2a. We analyzed the genome of JF3224 and showed that the genomic island in JF3224 is a new variant of AsaGEI, which we have called AsaGEI2b. While AsaGEI2b shares the same integrase gene and insertion site as AsaGEI2a, it is very different in terms of many other features. Additional genomic investigations combined with PCR genotyping revealed that JF3224 is sensitive to growth at 25°C, leading to insertion sequence-dependent rearrangement of the locus on the pAsa5 plasmid that encodes a type three secretion system, which is essential for the virulence of the bacterium. The analysis of the JF3224 genome confirmed that AsaGEIs are accurate indicators of the geographic origins of A. salmonicida subsp. salmonicida isolates and is another example of the susceptibility of the pAsa5 plasmid to DNA rearrangement

    Variants of a genomic island in Aeromonas salmonicida subsp. salmonicida link isolates with their geographical origins

    Get PDF
    Aeromonas salmonicida subsp. salmonicida is a fish pathogen. Analysis of its genomic characteristics is required to determine the worldwide distribution of the various populations of this bacterium. Genomic alignments between the 01-B526 pathogenic strain and the A449 reference strain have revealed a 51-kb chromosomal insertion in 01-B526. This insertion (AsaGEI1a) has been identified as a new genomic island (GEI) bearing prophage genes. PCR assays were used to detect this GEI in a collection of 139 A. salmonicida subsp. salmonicida isolates. Three forms of this GEI (AsaGEI1a, AsaGEI1b, AsaGEI2a) are now known based on this analysis and the sequencing of the genomes of seven additional isolates. A new prophage (prophage 3) associated with AsaGEI2a was also discovered. Each GEI appeared to be strongly associated with a specific geographic region. AsaGEI1a and AsaGEI2a were exclusively found in North American isolates, except for one European isolate bearing AsaGEI2a. The majority of the isolates bearing AsaGEI1b or no GEI were from Europe. Prophage 3 has also a particular geographic distribution and was found only in North American isolates. We demonstrated that A. salmonicida subsp. salmonicida possesses unsuspected elements of genomic heterogeneity that could be used as indicators to determine the geographic origins of isolates of this bacterium.Keywords : Bacteria, Genomics-functional genomics-comparative genomics; Furunculosis; Aeromonas salmonicida; Fish pathogen; Genomic island; Geographical distributio

    Moving interdisciplinary science forward: integrating participatory modelling with mathematical modelling of zoonotic disease in Africa

    Get PDF
    This review outlines the benefits of using multiple approaches to improve model design and facilitate multidisciplinary research into infectious diseases, as well as showing and proposing practical examples of effective integration. It looks particularly at the benefits of using participatory research in conjunction with traditional modelling methods to potentially improve disease research, control and management. Integrated approaches can lead to more realistic mathematical models which in turn can assist with making policy decisions that reduce disease and benefit local people. The emergence, risk, spread and control of diseases are affected by many complex bio-physical, environmental and socio-economic factors. These include climate and environmental change, land-use variation, changes in population and people’s behaviour. The evidence base for this scoping review comes from the work of a consortium, with the aim of integrating modelling approaches traditionally used in epidemiological, ecological and development research. A total of five examples of the impacts of participatory research on the choice of model structure are presented. Example 1 focused on using participatory research as a tool to structure a model. Example 2 looks at identifying the most relevant parameters of the system. Example 3 concentrates on identifying the most relevant regime of the system (e.g., temporal stability or otherwise), Example 4 examines the feedbacks from mathematical models to guide participatory research and Example 5 goes beyond the so-far described two-way interplay between participatory and mathematical approaches to look at the integration of multiple methods and frameworks. This scoping review describes examples of best practice in the use of participatory methods, illustrating their potential to overcome disciplinary hurdles and promote multidisciplinary collaboration, with the aim of making models and their predictions more useful for decision-making and policy formulation

    Altered gene expression and DNA damage in peripheral blood cells from Friedreich's ataxia patients: Cellular model of pathology

    Get PDF
    The neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials

    Overexpression of Human and Fly Frataxins in Drosophila Provokes Deleterious Effects at Biochemical, Physiological and Developmental Levels

    Get PDF
    10 pages, 5 figures. 21779322[PubMed] PMCID: PMC3136927BACKGROUND: Friedreich's ataxia (FA), the most frequent form of inherited ataxias in the Caucasian population, is caused by a reduced expression of frataxin, a highly conserved protein. Model organisms have contributed greatly in the efforts to decipher the function of frataxin; however, the precise function of this protein remains elusive. Overexpression studies are a useful approach to investigate the mechanistic actions of frataxin; however, the existing literature reports contradictory results. To further investigate the effect of frataxin overexpression, we analyzed the consequences of overexpressing human (FXN) and fly (FH) frataxins in Drosophila. METHODOLOGY/PRINCIPAL FINDINGS: We obtained transgenic flies that overexpressed human or fly frataxins in a general pattern and in different tissues using the UAS-GAL4 system. For both frataxins, we observed deleterious effects at the biochemical, histological and behavioral levels. Oxidative stress is a relevant factor in the frataxin overexpression phenotypes. Systemic frataxin overexpression reduces Drosophila viability and impairs the normal embryonic development of muscle and the peripheral nervous system. A reduction in the level of aconitase activity and a decrease in the level of NDUF3 were also observed in the transgenic flies that overexpressed frataxin. Frataxin overexpression in the nervous system reduces life span, impairs locomotor ability and causes brain degeneration. Frataxin aggregation and a misfolding of this protein have been shown not to be the mechanism that is responsible for the phenotypes that have been observed. Nevertheless, the expression of human frataxin rescues the aconitase activity in the fh knockdown mutant. CONCLUSION/SIGNIFICANCE: Our results provide in vivo evidence of a functional equivalence for human and fly frataxins and indicate that the control of frataxin expression is important for treatments that aim to increase frataxin levels.This work was supported by grants from Fondo Investigaciones Sanitarias (ISCIII06- PI0677) and La Fundació la Marató TV3 (exp 101932) of Spain. JVL is supported by the European Friedreich's Ataxia Consortium for Translational Studies. SS is a recipient of a fellowship from Ministerio de Ciencia e Innovación of Spain.Peer reviewe

    Neonatal erythropoiesis and subsequent anemia in HIV-positive and HIV-negative Zimbabwean babies during the first year of life: a longitudinal study

    Get PDF
    BACKGROUND: Anemia is common in HIV infection and independently associated with disease progression and mortality. The pathophysiology of HIV-related anemia is not well understood especially in infancy. METHODS: We conducted a longitudinal cohort study nested within the Zimbabwe Vitamin A for Mothers and Babies Project. We measured hemoglobin, erythropoietin (EPO), serum transferrin receptor (TfR) and serum ferritin at 6 weeks, 3 and 6 months of age and hemoglobin at 9 and 12 months in 3 groups of randomly selected infants: 136 born to HIV-negative mothers, and 99 born to HIV-positive mothers and who were infected themselves by 6 weeks of age, and 324 born to HIV-positive mothers but who did not become infected in the 6 months following birth. RESULTS: At one year of age, HIV-positive infants were 5.26 (adjusted odds ratio, P < 0.001) times more likely to be anemic compared to HIV-negative infants. Among, HIV-negative infants, EPO was or tended to be inversely associated with hemoglobin and was significantly positively associated with TfR throughout the first 6 months of life; TfR was significantly inversely associated with ferritin at 6 months; and EPO explained more of the variability in TfR than did ferritin. Among infected infants, the inverse association of EPO to hemoglobin was attenuated during early infancy, but significant at 6 months. Similar to HIV-negative infants, EPO was significantly positively associated with TfR throughout the first 6 months of life. However, the inverse association between TfR and ferritin observed among HIV-negative infants at 6 months was not observed among infected infants. Between birth and 6 months, mean serum ferritin concentration declined sharply (by ~90%) in all three groups of babies, but was significantly higher among HIV-positive compared to HIV-negative babies at all time points. CONCLUSION: HIV strongly increases anemia risk and confounds interpretation of hematologic indicators in infants. Among HIV-infected infants, the EPO response to anemia is attenuated near the time of infection in the first weeks of life, but normalizes by 6 months

    PGC-1alpha Down-Regulation Affects the Antioxidant Response in Friedreich's Ataxia

    Get PDF
    BACKGROUND: Cells from individuals with Friedreich's ataxia (FRDA) show reduced activities of antioxidant enzymes and cannot up-regulate their expression when exposed to oxidative stress. This blunted antioxidant response may play a central role in the pathogenesis. We previously reported that Peroxisome Proliferator Activated Receptor Gamma (PPARgamma) Coactivator 1-alpha (PGC-1alpha), a transcriptional master regulator of mitochondrial biogenesis and antioxidant responses, is down-regulated in most cell types from FRDA patients and animal models. METHODOLOGY/PRINCIPAL FINDINGS: We used primary fibroblasts from FRDA patients and the knock in-knock out animal model for the disease (KIKO mouse) to determine basal superoxide dismutase 2 (SOD2) levels and the response to oxidative stress induced by the addition of hydrogen peroxide. We measured the same parameters after pharmacological stimulation of PGC-1alpha. Compared to control cells, PGC-1alpha and SOD2 levels were decreased in FRDA cells and did not change after addition of hydrogen peroxide. PGC-1alpha direct silencing with siRNA in control fibroblasts led to a similar loss of SOD2 response to oxidative stress as observed in FRDA fibroblasts. PGC-1alpha activation with the PPARgamma agonist (Pioglitazone) or with a cAMP-dependent protein kinase (AMPK) agonist (AICAR) restored normal SOD2 induction. Treatment of the KIKO mice with Pioglitazone significantly up-regulates SOD2 in cerebellum and spinal cord. CONCLUSIONS/SIGNIFICANCE: PGC-1alpha down-regulation is likely to contribute to the blunted antioxidant response observed in cells from FRDA patients. This response can be restored by AMPK and PPARgamma agonists, suggesting a potential therapeutic approach for FRDA.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • …
    corecore