138 research outputs found

    In-situ growth of nonstoichiometric CrO0.87 and Co3O4 hybrid system for the enhanced electrocatalytic water splitting in alkaline media

    Get PDF
    The development of electrocatalysts for electrochemical water splitting has received considerable attention in response to the growing demand for renewable energy sources and environmental concerns. In this study, a simple hydrothermal growth approach was developed for the in-situ growth of non-stoichiometric CrO0.87 and Co3O4 hybrid materials. It is apparent that the morphology of the prepared material shows a heterogeneous aggregate of irregularly shaped nanoparticles. Both CrO0.87 and Co3O4 have cubic crystal structures. Its chemical composition was governed by the presence of Co, Cr, and O as its main constituents. For understanding the role CrO0.87 plays in the half-cell oxygen evolution reaction (OER) in alkaline conditions, CrO0.87 was optimized into Co3O4 nanostructures. The hybrid material with the highest concentration of CrO0.87 was found to be highly efficient at driving OER reactions at 255 mV and 20 mA cm−2. The optimized material demonstrated excellent durability for 45 h and a Tafel slope of 56 mV dec−1. Several factors may explain the outstanding performance of CrO0.87 and Co3O4 hybrid materials, including multiple metallic oxidation states, tailored surface properties, fast charge transport, and surface defects. An alternative method is proposed for the preparation of new generations of electrocatalysts for the conversion and storage of energy

    Hippocampal and prefrontal processing of network topology to simulate the future

    Get PDF
    Topological networks lie at the heart of our cities and social milieu. However, it remains unclear how and when the brain processes topological structures to guide future behaviour during everyday life. Using fMRI in humans and a simulation of London (UK), here we show that, specifically when new streets are entered during navigation of the city, right posterior hippocampal activity indexes the change in the number of local topological connections available for future travel and right anterior hippocampal activity reflects global properties of the street entered. When forced detours require re-planning of the route to the goal, bilateral inferior lateral prefrontal activity scales with the planning demands of a breadth-first search of future paths. These results help shape models of how hippocampal and prefrontal regions support navigation, planning and future simulation
    corecore