32 research outputs found

    Step-wise assembly, maturation and dynamic behavior of the human CENP-P/O/R/Q/U kinetochore sub-complex

    Get PDF
    Kinetochores are multi-protein megadalton assemblies that are required for attachment of microtubules to centromeres and, in turn, the segregation of chromosomes in mitosis. Kinetochore assembly is a cell cycle regulated multi-step process. The initial step occurs during interphase and involves loading of the 15-subunit constitutive centromere associated complex (CCAN), which contains a 5-subunit (CENP-P/O/R/Q/U) sub-complex. Here we show using a fluorescent three-hybrid (F3H) assay and fluorescence resonance energy transfer (FRET) in living mammalian cells that CENP-P/O/R/Q/U subunits exist in a tightly packed arrangement that involves multifold protein-protein interactions. This sub-complex is, however, not pre-assembled in the cytoplasm, but rather assembled on kinetochores through the step-wise recruitment of CENP-O/P heterodimers and the CENP-P, -O, -R, -Q and -U single protein units. SNAP-tag experiments and immuno-staining indicate that these loading events occur during S-phase in a manner similar to the nucleosome binding components of the CCAN, CENP-T/W/N. Furthermore, CENP-P/O/R/Q/U binding to the CCAN is largely mediated through interactions with the CENP-N binding protein CENP-L as well as CENP-K. Once assembled, CENP-P/O/R/Q/U exchanges slowly with the free nucleoplasmic pool indicating a low off-rate for individual CENP-P/O/R/Q/U subunits. Surprisingly, we then find that during late S-phase, following the kinetochore-binding step, both CENP-Q and -U but not -R undergo oligomerization. We propose that CENP-P/O/R/Q/U self-assembles on kinetochores with varying stoichiometry and undergoes a pre-mitotic maturation step that could be important for kinetochores switching into the correct conformation necessary for microtubule-attachment

    Dicer Is Associated with Ribosomal DNA Chromatin in Mammalian Cells

    Get PDF
    Background: RNA silencing is a common term for pathways utilizing small RNAs as sequence-specific guides to repress gene expression. Components of the RNA silencing machinery are involved in different aspects of chromatin function in numerous organisms. However, association of RNA silencing with chromatin in mammalian cells remains unclear. Methodology/Principal Findings: Immunostaining of mitotic chromosomes with antibodies visualizing either endogenous or ectopically expressed Dicer in mammalian cells revealed association of the protein with ribosomal DNA (rDNA) repeats. Chromatin immunoprecipitations and bisulfite sequencing experiments indicated that Dicer is associated with transcribed regions of both active and silenced genes in rDNA arrays of interphase chromosomes. Metabolic labeling of the mouse embryonic stem (ES) cells lacking Dicer did not reveal apparent defect in rRNA biogenesis though pre-rRNA synthesis in these cells was decreased, likely as a consequence of their slower growth caused by the loss of miRNAs. We analyzed in detail chromatin structure of rDNA but did not find any epigenetic changes at rDNA loci in Dicer 2/2 ES cells. Instead, we found that rDNA methylation is rather low in primary tissues, contrasting with rDNA methylation patterns in transformed cell lines. Conclusion/Significance: We found that Dicer, a key component of RNA silencing pathways, can be detected in association with rDNA chromatin in mammalian cells. The role of this particular localization of Dicer is not readily apparent since th

    Nuclear Pore Complex Protein Mediated Nuclear Localization of Dicer Protein in Human Cells

    Get PDF
    Human DICER1 protein cleaves double-stranded RNA into small sizes, a crucial step in production of single-stranded RNAs which are mediating factors of cytoplasmic RNA interference. Here, we clearly demonstrate that human DICER1 protein localizes not only to the cytoplasm but also to the nucleoplasm. We also find that human DICER1 protein associates with the NUP153 protein, one component of the nuclear pore complex. This association is detected predominantly in the cytoplasm but is also clearly distinguishable at the nuclear periphery. Additional characterization of the NUP153-DICER1 association suggests NUP153 plays a crucial role in the nuclear localization of the DICER1 protein

    Advancing our understanding of functional genome organisation through studies in the fission yeast

    Get PDF
    Significant progress has been made in understanding the functional organisation of the cell nucleus. Still many questions remain to be answered about the relationship between the spatial organisation of the nucleus and the regulation of the genome function. There are many conflicting data in the field making it very difficult to merge published results on mammalian cells into one model on subnuclear chromatin organisation. The fission yeast, Schizosaccharomyces pombe, over the last decades has emerged as a valuable model organism in understanding basic biological mechanisms, especially the cell cycle and chromosome biology. In this review we describe and compare the nuclear organisation in mammalian and fission yeast cells. We believe that fission yeast is a good tool to resolve at least some of the contradictions and unanswered questions concerning functional nuclear architecture, since S. pombe has chromosomes structurally similar to that of human. S. pombe also has the advantage over higher eukaryotes in that the genome can easily be manipulated via homologous recombination making it possible to integrate the tools needed for visualisation of chromosomes using live-cell microscopy. Classical genetic experiments can be used to elucidate what factors are involved in a certain mechanism. The knowledge we have gained during the last few years indicates similarities between the genome organisation in fission yeast and mammalian cells. We therefore propose the use of fission yeast for further advancement of our understanding of functional nuclear organisation

    Evolutionary history of the genus <em>Listeria</em> and its virulence genes.

    No full text
    The genus Listeria contains the two pathogenic species Listeria monocytogenes and Listeria ivanovii and the four apparently apathogenic species Listeria innocua, Listeria seeligeri, Listeria welshimeri, and Listeria grayi. Pathogenicity of the former two species is enabled by an approximately 9 kb virulence gene cluster which is also present in a modified form in L. seeligeri. For all Listeria species, the sequence of the virulence gene cluster locus and its flanking regions was either determined in this study or assembled from public databases. Furthermore, some virulence-associated internalin loci were compared among the six species. Phylogenetic analyses were performed on a data set containing the sequences of prs, ldh, vclA, and vclB (all directly flanking the virulence gene cluster), as well as the iap gene and the 16S and 23S-rRNA coding genes which are located at different sites in the listerial chromosomes. L. grayi represents the deepest branch within the genus. The remaining five species form two groupings which have a high bootstrap support and which are consistently found by using different treeing methods. One lineage represents L. monocytogenes and L. innocua, while the other contains L. welshimeri, L. ivanovii and L. seeligeri, with L. welshimeri forming the deepest branch. Based on this perception, we tried to reconstruct the evolution of the virulence gene cluster. Since no traces of lateral gene transfer events could be detected the most parsimonious scenario is that the virulence gene cluster was present in the common ancestor of L. monocytogenes, L. innocua, L. ivanovii, L. seeligeri and L. welshimeri and that the pathogenic capability has been lost in two separate events represented by L. innocua and L. welshimeri. This hypothesis is also supported by the location of the putative deletion breakpoints of the virulence gene cluster within L. innocua and L. welshimeri

    How big is the iceberg of which organellar genes in nuclear genomes are but the tip?

    No full text
    As more and more complete bacterial and archaeal genome sequences become available, the role of lateral gene transfer (LGT) in shaping them becomes more and more clear. Over the long term, it may be the dominant force, affecting most genes in most prokaryotes. We review the history of LGT, suggesting reasons why its prevalence and impact were so long dismissed. We discuss various methods purporting to measure the extent of LGT, and evidence for and against the notion that there is a core of never-exchanged genes shared by all genomes, from which we can deduce the "true" organismal tree. We also consider evidence for, and implications of, LGT between prokaryotes and phagocytic eukaryotes

    F3H analysis of CENP-O class protein interactions.

    No full text
    <p>GFP-tagged CENP-O class proteins, CENP-K, -L, -N and -C (rows) were bound to ectopic chromosomes sites. When RFP-tagged CENP-O class proteins, CENP-K, -L, -N and -C (lines) were recruited to these proteins, this was visible by a yellow dot. Signal intensity at the nuclear spot was used an indicator for interaction strength. ++, +: strong interaction; +βˆ’: weak interaction; βˆ’: no interaction.</p
    corecore