1,300 research outputs found
Magnetic structure of free cobalt clusters studied with Stern-Gerlach deflection experiments
We have studied the magnetic properties of free cobalt clusters in two
semi-independent Stern-Gerlach deflection experiments at temperatures between
60 and 307 K. We find that clusters consisting of 13 to 200 cobalt atoms
exhibit behavior that is entirely consistent with superparamagnetism, though
complicated by finite-system fluctuations in cluster temperature. By fitting
the data to the Langevin function, we report magnetic moments per atom for each
cobalt cluster size and compare the results of our two measurements and all
those performed previously. In addition to a gradual decrease in moment per
atom with increasing size, there are oscillations that appear to be caused by
geometrical shell structure. We discuss our observations in light of the two
competing models for Langevin-like magnetization behavior in free clusters,
superparamagnetism and adiabatic magnetization, and conclude that the evidence
strongly supports the superparamagnetic model
Effects of obesity, total fasting and realimentation on L-thyroxine (T4), 3,5,3', - L-triiodothyronine (T3), - 3,3',5'-L-triiodorhyronine (rT3), - thyroxine binding globulin (TBG), cortisol, thyrotophin, cortisol-binding globulin (CBG), transferrin, alpha2-haptoglobin and complement C 3 in serum
A Heterosynaptic Learning Rule for Neural Networks
In this article we intoduce a novel stochastic Hebb-like learning rule for
neural networks that is neurobiologically motivated. This learning rule
combines features of unsupervised (Hebbian) and supervised (reinforcement)
learning and is stochastic with respect to the selection of the time points
when a synapse is modified. Moreover, the learning rule does not only affect
the synapse between pre- and postsynaptic neuron, which is called homosynaptic
plasticity, but effects also further remote synapses of the pre- and
postsynaptic neuron. This more complex form of synaptic plasticity has recently
come under investigations in neurobiology and is called heterosynaptic
plasticity. We demonstrate that this learning rule is useful in training neural
networks by learning parity functions including the exclusive-or (XOR) mapping
in a multilayer feed-forward network. We find, that our stochastic learning
rule works well, even in the presence of noise. Importantly, the mean learning
time increases with the number of patterns to be learned polynomially,
indicating efficient learning.Comment: 19 page
Evidence for stratospheric sudden warming effects on the upper thermosphere derived from satellite orbital decay data during 1967–2013
We investigate possible impact of stratospheric sudden warmings (SSWs) on the thermosphere by using long-term data of the global average thermospheric total mass density derived from satellite orbital drag during 1967–2013. Residuals are analyzed between the data and empirical Global Average Mass Density Model (GAMDM) that takes into account density variability due to solar activity, season, geomagnetic activity, and long-term trend. A superposed epoch analysis of 37 SSW events reveals a density reduction of 3–7% at 250–575 km around the time of maximum polar vortex weakening. The relative density perturbation is found to be greater at higher altitudes. The temperature perturbation is estimated to be −7.0 K at 400 km. We show that the density reduction can arise from enhanced wave forcing from the lower atmosphere
Photodetection of propagating quantum microwaves in circuit QED
We develop the theory of a metamaterial composed of an array of discrete
quantum absorbers inside a one-dimensional waveguide that implements a
high-efficiency microwave photon detector. A basic design consists of a few
metastable superconducting nanocircuits spread inside and coupled to a
one-dimensional waveguide in a circuit QED setup. The arrival of a {\it
propagating} quantum microwave field induces an irreversible change in the
population of the internal levels of the absorbers, due to a selective
absorption of photon excitations. This design is studied using a formal but
simple quantum field theory, which allows us to evaluate the single-photon
absorption efficiency for one and many absorber setups. As an example, we
consider a particular design that combines a coplanar coaxial waveguide with
superconducting phase qubits, a natural but not exclusive playground for
experimental implementations. This work and a possible experimental realization
may stimulate the possible arrival of "all-optical" quantum information
processing with propagating quantum microwaves, where a microwave photodetector
could play a key role.Comment: 27 pages, submitted to Physica Scripta for Nobel Symposium on "Qubits
for Quantum Information", 200
- …
