1,300 research outputs found

    Magnetic structure of free cobalt clusters studied with Stern-Gerlach deflection experiments

    Get PDF
    We have studied the magnetic properties of free cobalt clusters in two semi-independent Stern-Gerlach deflection experiments at temperatures between 60 and 307 K. We find that clusters consisting of 13 to 200 cobalt atoms exhibit behavior that is entirely consistent with superparamagnetism, though complicated by finite-system fluctuations in cluster temperature. By fitting the data to the Langevin function, we report magnetic moments per atom for each cobalt cluster size and compare the results of our two measurements and all those performed previously. In addition to a gradual decrease in moment per atom with increasing size, there are oscillations that appear to be caused by geometrical shell structure. We discuss our observations in light of the two competing models for Langevin-like magnetization behavior in free clusters, superparamagnetism and adiabatic magnetization, and conclude that the evidence strongly supports the superparamagnetic model

    A Heterosynaptic Learning Rule for Neural Networks

    Full text link
    In this article we intoduce a novel stochastic Hebb-like learning rule for neural networks that is neurobiologically motivated. This learning rule combines features of unsupervised (Hebbian) and supervised (reinforcement) learning and is stochastic with respect to the selection of the time points when a synapse is modified. Moreover, the learning rule does not only affect the synapse between pre- and postsynaptic neuron, which is called homosynaptic plasticity, but effects also further remote synapses of the pre- and postsynaptic neuron. This more complex form of synaptic plasticity has recently come under investigations in neurobiology and is called heterosynaptic plasticity. We demonstrate that this learning rule is useful in training neural networks by learning parity functions including the exclusive-or (XOR) mapping in a multilayer feed-forward network. We find, that our stochastic learning rule works well, even in the presence of noise. Importantly, the mean learning time increases with the number of patterns to be learned polynomially, indicating efficient learning.Comment: 19 page

    Evidence for stratospheric sudden warming effects on the upper thermosphere derived from satellite orbital decay data during 1967–2013

    Get PDF
    We investigate possible impact of stratospheric sudden warmings (SSWs) on the thermosphere by using long-term data of the global average thermospheric total mass density derived from satellite orbital drag during 1967–2013. Residuals are analyzed between the data and empirical Global Average Mass Density Model (GAMDM) that takes into account density variability due to solar activity, season, geomagnetic activity, and long-term trend. A superposed epoch analysis of 37 SSW events reveals a density reduction of 3–7% at 250–575 km around the time of maximum polar vortex weakening. The relative density perturbation is found to be greater at higher altitudes. The temperature perturbation is estimated to be −7.0 K at 400 km. We show that the density reduction can arise from enhanced wave forcing from the lower atmosphere

    Photodetection of propagating quantum microwaves in circuit QED

    Get PDF
    We develop the theory of a metamaterial composed of an array of discrete quantum absorbers inside a one-dimensional waveguide that implements a high-efficiency microwave photon detector. A basic design consists of a few metastable superconducting nanocircuits spread inside and coupled to a one-dimensional waveguide in a circuit QED setup. The arrival of a {\it propagating} quantum microwave field induces an irreversible change in the population of the internal levels of the absorbers, due to a selective absorption of photon excitations. This design is studied using a formal but simple quantum field theory, which allows us to evaluate the single-photon absorption efficiency for one and many absorber setups. As an example, we consider a particular design that combines a coplanar coaxial waveguide with superconducting phase qubits, a natural but not exclusive playground for experimental implementations. This work and a possible experimental realization may stimulate the possible arrival of "all-optical" quantum information processing with propagating quantum microwaves, where a microwave photodetector could play a key role.Comment: 27 pages, submitted to Physica Scripta for Nobel Symposium on "Qubits for Quantum Information", 200
    corecore