43 research outputs found
Producing a group handbook to improve research culture and inclusivity – our experiences
BackgroundWe were awarded funds to create a handbook for the Animal Welfare and Behaviour (AWB) group at Bristol Veterinary School. This work was financed by the Enhancing Research Culture Fund distributed by the University of Bristol, and supplied by Research England. Between January and July 2023 we collectively discussed, developed, drafted, and delivered our 66-page handbook. Here is the process we used, details of what we learned along the way, our next steps, and what our members think of the final product. You can find our handbook using the QR code below, or go to: https://osf.io/a3xs
Nature calls: Intelligence and natural foraging style predict poor welfare in captive parrots
Understanding why some species thrive in captivity, while others struggle to adjust, can suggest new ways to improve animal care. Approximately half of all Psittaciformes, a highly threatened order, live in zoos, breeding centres and private homes. Here, some species are prone to behavioural and reproductive problems that raise conservation and ethical concerns. To identify risk factors, we analysed data on hatching rates in breeding centres (115 species, 10 255 pairs) and stereotypic behaviour (SB) in private homes (50 species, 1378 individuals), using phylogenetic comparative methods (PCMs). Small captive population sizes predicted low hatch rates, potentially due to genetic bottlenecks, inbreeding and low availability of compatible mates. Species naturally reliant on diets requiring substantial handling were most prone to feather-damaging behaviours (e.g. self-plucking), indicating inadequacies in the composition or presentation of feed (often highly processed). Parrot species with relatively large brains were most prone to oral and whole-body SB: the first empirical evidence that intelligence can confer poor captive welfare. Together, results suggest that more naturalistic diets would improve welfare, and that intelligent psittacines need increased cognitive stimulation. These findings should help improve captive parrot care and inspire further PCM research to understand species differences in responses to captivity
Behavioural and molecular characterisation of the Dlg2 haploinsufficiency rat model of genetic risk for psychiatric disorder
Genetic studies implicate disruption to the DLG2 gene in copy number variants as increasing risk for schizophrenia, autism spectrum disorders and intellectual disability. To investigate psychiatric endophenotypes associated with DLG2 haploinsufficiency (and concomitant PSD-93 protein reduction) a novel clinically relevant Dlg2+/− rat was assessed for abnormalities in anxiety, sensorimotor gating, hedonic reactions, social behaviour, and locomotor response to the N-Methyl-D-aspartic acid receptor antagonist phencyclidine. Dlg gene and protein expression were also investigated to assess model validity. Reductions in PSD-93 messenger RNA and protein were observed in the absence of compensation by other related genes or proteins. Behaviourally Dlg2+/− rats show a potentiated locomotor response to phencyclidine, as is typical of psychotic disorder models, in the absence of deficits in the other behavioural phenotypes assessed here. This shows that the behavioural effects of Dlg2 haploinsufficiency may specifically relate to psychosis vulnerability but are subtle, and partially dissimilar to behavioural deficits previously reported in Dlg2+/− mouse models demonstrating issues surrounding the comparison of models with different aetiology and species. Intact performance on many of the behavioural domains assessed here, such as anxiety and reward processing, will remove these as confounds when continuing investigation into this model using more complex cognitive tasks
Reduced expression of the psychiatric risk gene DLG2 (PSD93) impairs hippocampal synaptic integration and plasticity
Copy number variants indicating loss of function in the DLG2 gene have been associated with markedly increased risk for schizophrenia, autism spectrum disorder, and intellectual disability. DLG2 encodes the postsynaptic scaffolding protein DLG2 (PSD93) that interacts with NMDA receptors, potassium channels, and cytoskeletal regulators but the net impact of these interactions on synaptic plasticity, likely underpinning cognitive impairments associated with these conditions, remains unclear. Here, hippocampal CA1 neuronal excitability and synaptic function were investigated in a novel clinically relevant heterozygous Dlg2+/− rat model using ex vivo patch-clamp electrophysiology, pharmacology, and computational modelling. Dlg2+/− rats had reduced supra-linear dendritic integration of synaptic inputs resulting in impaired associative long-term potentiation. This impairment was not caused by a change in synaptic input since NMDA receptor-mediated synaptic currents were, conversely, increased and AMPA receptor-mediated currents were unaffected. Instead, the impairment in associative long-term potentiation resulted from an increase in potassium channel function leading to a decrease in input resistance, which reduced supra-linear dendritic integration. Enhancement of dendritic excitability by blockade of potassium channels or activation of muscarinic M1 receptors with selective allosteric agonist 77-LH-28-1 reduced the threshold for dendritic integration and 77-LH-28-1 rescued the associative long-term potentiation impairment in the Dlg2+/− rats. These findings demonstrate a biological phenotype that can be reversed by compound classes used clinically, such as muscarinic M1 receptor agonists, and is therefore a potential target for therapeutic intervention
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Networked T Cell Death following Macrophage Infection by Mycobacterium tuberculosis
<div><h3>Background</h3><p>Depletion of T cells following infection by <em>Mycobacterium tuberculosis</em> (Mtb) impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised.</p> <h3>Methodology/Principal Findings</h3><p>We found that lymphopenia (<1.5×10<sup>9</sup> cells/l) was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb) or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s) were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from <em>Mycobacterium bovis</em> Bacille de Calmette et Guerin (BCG)- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system.</p> <h3>Conclusions</h3><p>Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as interfere with microbial eradication in the granuloma.</p> </div