13 research outputs found

    Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    Get PDF
    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:O–Ta:O nanolaminate, and the ALD layer was Al2O3–Ta2O5 nanolaminate, AlxTayOz mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120 nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing

    Phylogenomic insights to the origin and spread of phocine distemper virus in European harbour seals in 1988 and 2002

    Get PDF
    The study was supported by the Villum Foundation, the Danish Ministry of the Environment, the Volkswagen Foundation (Az.: 89911) and the BONUS programme BaltHealth, which has received funding from BONUS (Art. 185), funded jointly by the EU, Innovation Fund Denmark (grants 6180-00001B and 6180-00002B), Forschungszentrum Jülich GmbH, German Federal Ministry of Education and Research (grant FKZ 03F0767A), Academy of Finland (grant 311966) and Swedish Foundation for Strategic Environmental Research (MISTRA).The 1988 and 2002 phocine distemper virus (PDV) outbreaks in European harbour seals Phoca vitulina are among the largest mass mortality events recorded in marine mammals. Despite its large impact on harbour seal population numbers, and 3 decades of studies, many questions regarding the spread and temporal origin of PDV remain unanswered. Here, we sequenced and analysed 7123 bp of the PDV genome, including the coding and non-coding regions of the entire P, M, F and H genes in tissues from 44 harbour seals to shed new light on the origin and spread of PDV in 1988 and 2002. The phylogenetic analyses trace the origin of the PDV strain causing the 1988 outbreak to between June 1987 and April 1988, while the origin of the strain causing the 2002 outbreak can be traced back to between July 2001 and April 2002. The analyses further point to several independent introductions of PDV in 1988, possibly linked to a southward mass immigration of harp seals in the winter and spring of 1987−1988. The vector for the 2002 outbreak is unknown, but the epidemiological analyses suggest the subsequent spread of PDV from the epicentre in the Kattegat, Denmark, to haul-out sites in the North Sea through several independent introductions.PostprintPeer reviewe

    Programming nanostructured soft biological surfaces by atomic layer deposition

    Get PDF
    Here, we present the first successful attempt to programme the surface properties of nanostructured soft biological tissues by atomic layer deposition (ALD). The nanopatterned surface of lotus leaf was tuned by 3-125 nm TiO2 thin films. The lotus/TiO2 composites were studied by SEM-EDX, XPS, Raman, TG-DTA, XRR, water contact angle and photocatalysis measurements. While we could preserve the superhydrophobic feature of lotus, we managed to add a new property, i.e. photocatalytic activity. We also explored how surface passivation treatments and various ALD precursors affect the stability of the sensitive soft biological tissues. As we were able to gradually change the number of nanopatterns of lotus, we gained new insight into how the hollow organic nanotubes on the surface of lotus influence its superhydrophobic feature

    Uusien lääkkeiden käytön ja hoitotulosten seuranta sairaaloissa

    No full text

    Sealing of hard CrN and DLC coatings with atomic layer deposition

    No full text
    Atomic layer deposition (ALD) is a thin film deposition technique that is based on alternating and saturating surface reactions of two or more gaseous precursors. The excellent conformality of ALD thin films can be exploited for sealing defects in coatings made by other techniques. Here the corrosion protection properties of hard CrN and diamond-like carbon (DLC) coatings on low alloy steel were improved by ALD sealing with 50 nm thick layers consisting of Al2O3 and Ta2O5 nanolaminates or mixtures. In cross sectional images the ALD layers were found to follow the surface morphology of the CrN coatings uniformly. Furthermore, ALD growth into the pinholes of the CrN coating was verified. In electrochemical measurements the ALD sealing was found to decrease the current density of the CrN coated steel by over 2 orders of magnitude. The neutral salt spray (NSS) durability was also improved: on the best samples the appearance of corrosion spots was delayed from 2 to 168 h. On DLC coatings the adhesion of the ALD sealing layers was weaker, but still clear improvement in NSS durability was achieved indicating sealing of the pinholes
    corecore