56 research outputs found

    Caspase-11 regulates the tumour suppressor function of STAT1 in a murine model of colitis-associated carcinogenesis

    Full text link
    Murine inflammatory caspase-11 has an important role in intestinal epithelial inflammation and barrier function. Activation of the non-canonical inflammasome, mediated by caspase-11, serves as a regulatory pathway for the production of the proinflammatory cytokines IL-1ÎČ and IL-18, and has a key role in pyroptotic cell death. We have previously demonstrated a protective role for caspase-11 during dextran sulphate sodium (DSS)-induced colitis, however the importance of caspase-11 during colorectal tumour development remains unclear. Here, we show that Casp11−/− mice are highly susceptible to the azoxymethane (AOM)-DSS model of colitis-associated cancer (CAC), compared to their wild type (WT) littermates. We show that deficient IL-18 production occurs at initial inflammation stages of disease, and that IL-1ÎČ production is more significantly impaired in Casp11−/− colons during established CAC. We identify defective STAT1 activation in Casp11−/− colons during disease progression, and show that IL-1ÎČ signalling induces caspase-11 expression and STAT1 activation in primary murine macrophages and intestinal epithelial cells. These findings uncover an anti-tumour role for the caspase-11 and the non-canonical inflammasome during CAC, and suggest a critical role for caspase-11, linking IL-1ÎČ and STAT1 signalling pathways

    Antioxidant-mediated inhibition of the heat shock response leads to apoptosis

    Get PDF
    AbstractWe examined the hypothesis that reactive oxygen species (ROS) contribute to the induction of heat shock proteins (hsps) during stress response. Exposure of HL-60 human myelocytic cells to 42°C induced both hsp72 and hsp27. In the presence of the antioxidant molecules pyrrolidine dithiocarbamate or 1,10-phenanthroline induction of hsp72 and 27 was significantly decreased, while N-acetyl-l-cysteine caused a slight reduction. Prevention of hsp induction was associated with heat sensitization and increased caspase activity, indicating that the cells were undergoing apoptosis. These data suggest that ROS contribute to the induction of hsps and furthermore, that hsp induction and apoptosis are mutually exclusive events within the same cell

    Non-canonical inflammasome activation mediates the adjuvanticity of nanoparticles

    Get PDF
    The non-canonical inflammasome sensor caspase-11 and gasdermin D (GSDMD) drive inflammation and pyroptosis, a type of immunogenic cell death that favors cell-mediated immunity (CMI) in cancer, infection, and autoimmunity. Here we show that caspase-11 and GSDMD are required for CD8+ and Th1 responses induced by nanoparticulate vaccine adjuvants. We demonstrate that nanoparticle-induced reactive oxygen species (ROS) are size dependent and essential for CMI, and we identify 50- to 60-nm nanoparticles as optimal inducers of ROS, GSDMD activation, and Th1 and CD8+ responses. We reveal a division of labor for IL-1 and IL-18, where IL-1 supports Th1 and IL-18 promotes CD8+ responses. Exploiting size as a key attribute, we demonstrate that biodegradable poly-lactic co-glycolic acid nanoparticles are potent CMI-inducing adjuvants. Our work implicates ROS and the non-canonical inflammasome in the mode of action of polymeric nanoparticulate adjuvants and establishes adjuvant size as a key design principle for vaccines against cancer and intracellular pathogens

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Digestive Diseases Week (DDW)

    No full text

    Guardians of the Cell: Effector-Triggered Immunity Steers Mammalian Immune Defense

    No full text
    The mammalian innate immune system deals with invading pathogens and stress by activating pattern-recognition receptors (PRRs) in the host. Initially proposed to be triggered by the discrimination of defined molecular signatures from pathogens rather than from self, it is now clear that PRRs can also be activated by endogenous ligands, bacterial metabolites and, following pathogen-induced alterations of cellular processes, changes in the F-actin cytoskeleton. These processes are collectively referred to as effector-triggered immunity (ETI). Here, we summarize the molecular and conceptual advances in our understanding of cell autonomous innate immune responses against bacterial pathogens, and discuss how classical activation of PRRs and ETI interplay to drive inflammatory responses
    • 

    corecore