9 research outputs found

    Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development.

    Get PDF
    Cellular ATP is mainly generated through mitochondrial oxidative phosphorylation, which is dependent on mitochondrial DNA (mtDNA). We have previously demonstrated the importance of oocyte mtDNA for porcine and human fertilization. However, the role of nuclear-encoded mitochondrial replication factors during oocyte and embryo development is not yet understood. We have analyzed two key factors, mitochondrial transcription factor A (TFAM) and polymerase gamma (POLG), to determine their role in oocyte and early embryo development. Competent and incompetent oocytes, as determined by brilliant cresyl blue (BCB) dye, were assessed intermittently during the maturation process for TFAM and POLG mRNA using real-time RT-PCR, for TFAM and POLG protein using immunocytochemistry, and for mtDNA copy number using real-time PCR. Analysis was also carried out following treatment of maturing oocytes with the mtDNA replication inhibitor, 2',3'-dideoxycytidine (ddC). Following in vitro fertilization, preimplantation embryos were also analyzed. Despite increased levels of TFAM and POLG mRNA and protein at the four-cell stage, no increase in mtDNA copy number was observed in early preimplantation development. To compensate for this, mtDNA appeared to be replicated during oocyte maturation. However, significant differences in nuclear-encoded regulatory protein expression were observed between BCB(+) and BCB(-) oocytes and between untreated oocytes and those treated with ddC. These changes resulted in delayed mtDNA replication, which correlated to reduced fertilization and embryonic development. We therefore conclude that adherence to the regulation of the timing of mtDNA replication during oocyte maturation is essential for successful embryonic development

    Mitochondria directly influence fertilisation outcome in the pig

    Get PDF
    The mitochondrion is explicitly involved in cytoplasmic regulation and is the cell's major generator of ATP. Our aim was to determine whether mitochondria alone could influence fertilisation outcome. In vitro, oocyte competence can be assessed through the presence of glucose-6-phosphate dehydrogenase (G6PD) as indicated by the dye, brilliant cresyl blue (BCB). Using porcine in vitro fertilisation (IVF), we have assessed oocyte maturation, cytoplasmic volume, fertilisation outcome, mitochondrial number as determined by mtDNA copy number, and whether mitochondria are uniformly distributed between blastomeres of each embryo. After staining with BCB, we observed a significant difference in cytoplasmic volume between BCB positive (BCB+) and BCB negative (BCB-) oocytes. There was also a significant difference in mtDNA copy number between fertilised and unfertilised oocytes and unequal mitochondrial segregation between blastomeres during early cleavage stages. Furthermore, we have supplemented BCB- oocytes with mitochondria from maternal relatives and observed a significant difference in fertilisation outcomes following both IVF and intracytoplasmic sperm injection (ICSI) between supplemented, sham-injected and non-treated BCB- oocytes. We have therefore demonstrated a relationship between oocyte maturity, cytoplasmic volume, and fertilisation outcome and mitochondrial content. These data suggest that mitochondrial number is important for fertilisation outcome and embryonic development. Furthermore, a mitochondrial pre-fertilisation threshold may ensure that, as mitochondria are diluted out during post-fertilisation cleavage, there are sufficient copies of mtDNA per blastomere to allow transmission of mtDNA to each cell of the post-implantation embryo after the initiation of mtDNA replication during the early postimplantation stages

    Study on the mitochondrial activity and membrane potential after exposing later stage oocytes of two gorgonian corals (Junceella juncea and Junceella fragilis) to cryoprotectants.

    No full text
    Coral reefs provide a valuable habitat for many economically valuable fish and invertebrates. However, they are in serious jeopardy, threatened by increasing over-exploitation, pollution, habitat destruction, disease and global climate change. Here, we examined the effect of cryoprotectant exposure on mitochondrial activity and membrane potential in coral oocytes in order to find suitable cryoprotectants towards their successful cryopreservation. According to the No Observed Effect Concentrations (NOECs), methanol was found to be the least toxic cryoprotectant whilst DMSO was the most toxic cryoprotectant. The results also demonstrated that there were no significant differences (p > 0.05) in ATP concentrations between Junceella juncea and Junceella fragilis after exposure to all concentrations of all cryoprotectants for 30 min. Using confocal microscopy, JC-1 (5,50,6,60-tetrachloro-1,10,3,30-tetraethyl-imidacarbocyanine iodide) staining indicated that the mitochondrial membrane potential of Junceella fragilis oocytes reduced after 1 M and 2 M methanol treatment and a loss of the mitochondrial distribution pattern and poor green fluorescence after 3M methanol treatment. Therefore, even oocytes that show no adverse effect of cryoprotectants on survival might suffer some more subtle impacts. The results obtained from this study will provide a basis for development of protocols to cryopreserve the oocytes of gorgonian corals

    Housekeeping genes for cryopreservation studies on zebrafish embryos and blastomeres.

    No full text
    Cryopreservation success is usually analysed in terms of cell survival, although there are other potential effects that do not necessarily result in cell death. These include DNA damage, which could result in altered gene expression. Real-time reverse transcriptase PCR allows quantitative analysis of gene expression but usually requires analysis of a 'housekeeping' gene as an internal reference. As the stability of housekeeping genes varies significantly among different groups of samples, it is recommended that those chosen are validated for each different type of sample group. This study aimed to validate housekeeping genes for use in cryopreservation studies of zebrafish embryos. Seven potential housekeeping genes were analysed across fresh and chilled intact embryos and across fresh and frozen isolated blastomeres using the GeNorm and NormFinder software packages. Results suggest that combined use of beta-actin and EF1alpha as housekeeping genes would be suitable for cryopreservation studies on zebrafish embryos and blastomeres

    Effect of chilling and cryopreservation on expression of Pax genes in zebrafish (Danio rerio) embryos and blastomeres

    No full text
    Cryopreservation is now common practice in the fields of aquaculture, conservation and biomedicine. However, there is a lack of information on the effect of chilling and cryopreservation at the molecular level. In the present study, we used real-time RT-PCR analysis to determine the effect of chilling and cryopreservation on expression of Pax2a, Pax2b, Pax5 and Pax8 which constitute one subgroup of the Pax gene family. As intact embryos of zebrafish have not yet been successfully cryopreserved, we have used two alternatives: chilling of intact embryos and cryopreservation of isolated blastomeres. Cryopreservation was found to affect the normal pattern of gene expression in zebrafish embryonic blastomeres. The trends, profile changes, in expression of Pax2a and Pax5 occurred to a lesser extent in frozen-thawed blastomeres than in fresh blastomeres whilst the opposite was true for Pax8. The trends in expression of Pax2b were delayed in frozen-thawed blastomeres compared to fresh blastomeres. Cryopreservation can therefore disrupt normal gene expression patterns in zebrafish embryonic blastomeres which could have a detrimental effect on embryo development

    Mitochondrial DNA replication during differentiation of murine embryonic stem cells

    Get PDF
    Oxidative phosphorylation (OXPHOS), the intracellular process that generates the majority of the ATP of a cell through the electron-transfer chain, is highly dependent on proteins encoded by the mitochondrial genome ( mtDNA). MtDNA replication is regulated by the nuclear-encoded mitochondrial transcription factor A (TFAM) and the mitochondrial-specific DNA polymerase gamma, which consists of a catalytic (POLG) and an accessory (POLG2) subunit. Differentiation of pluripotent embryonic stem cells (ESCs) into specific cell types requires expansion of discrete populations of mitochondria and mtDNA replication to meet the specific metabolic requirements of the cell. We determined by real-time PCR that expression of pluripotent markers is reduced before the upregulation of Polg, Polg2 and Tfam in spontaneously differentiating R1 murine (m) ESCs, along with transient increases in mtDNA copy number. In D3 mESCs, the initial transient increase did not take place. However, precursors of neuronal and cardiomyocyte differentiation were positive for both POLG and TFAM. Similar-stage ESCs also showed active mtDNA replication, identified by 5-bromo-2'-deoxy-uridine labelling, as mtDNA copy number increased. Retinoic-acid-induced differentiation resulted in more consistent patterns of replication and upregulation of Polg, Polg2 and Tfam, whereas siRNA knockdown demonstrated that steady-state expression of POLG is essential for maintaining pluripotency

    The analysis of mitochondria and mitochondrial DNA in human embryonic stem cells.

    No full text
    As human embryonic stem cells (hESCs) undergo differentiation, they express genes characteristic of the lineage for which they are destined. However, fully differentiated individual cell types can be characterized by the number of mitochondria they possess and the copies of the mitochondrial genome per mitochondrion. These characteristics are indicative of a specific cell's requirement for adenosine triphosphate (ATP) and therefore cellular viability and function. Consequently, failure for an ESC to possess the full complement of mitochondria and mitochondrial DNA (mtDNA) could limit its final commitment to a particular fate. We describe a series of protocols that analyze the process of cellular mitochondrial and mtDNA differentiation during hESC differentiation. In addition, mtDNA transcription and replication are key events in cellular differentiation that require interaction between the nucleus and the mitochondrion. To this extent, we describe a series of protocols that analyze the initiation of these key events as hESCs progress from their undifferentiated state to the fully committed cell. Last, we describe real-time polymerase chain reaction protocols that allow both the identification of mtDNA copy number and determine whether mtDNA copy is uniform (homoplasmy) in its transmission or heterogeneous (heteroplasmy)

    Mitochondrial DNA transmission and transcription after somatic cell fusion to one or more cytoplasts

    No full text
    Following fertilization, mitochondrial DNA is inherited from the oocyte and transmitted homoplasmically. However, following nuclear transfer, mitochondrial DNA can be transmitted from both the donor cell and recipient oocyte, resulting in a state of heteroplasmy. To determine whether the genetic diversity between donor cell and recipient cytoplast mitochondrial DNA influences development, we generated bovine embryos by fusing a donor cell to one or more enucleated cytoplasts. Analysis of mitochondrial DNA from embryos, fetal tissues, and blood samples from offspring revealed that early preimplantation embryos from two or three cytoplasts had significantly more mitochondrial DNA variants than fetal tissues. Phylogenic analysis of embryos generated using single cytoplasts divided the mitochondrial DNA sequence variants into three separate groups with various amounts of genetic divergence from the donor cell line. In heteroplasmic tissue and blood samples, the predominant mitochondrial DNA population was significantly more divergent from the donor cell than the less frequent allele. Furthermore, analysis of the mitochondrially encoded cytochrome B gene showed that two heteroplasmic alleles encoded for different amino acids, and the ratios of mitochondrial DNA/mRNA for each allele differed significantly between tissues. The degree of evolutionary distance between the donor cell and the cytoplast and the variability in heteroplasmy between tissues may have an impact on more divergent intergeneric nuclear transfer and the use of this approach for the generation of embryonic stem cells
    corecore