4 research outputs found

    Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844–848

    Get PDF
    Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000–3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons—Leu844, Cys845, Ala846, Leu847, and Gly848—located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844–848 exists and will be valuable in the management and genetic counseling of a significant number of individuals

    ZNF469 frequently mutated in the brittle cornea syndrome (BCS) is a single exon gene possibly regulating the expression of several extracellular matrix components

    Full text link
    Brittle cornea syndrome (BCS; MIM 229200) is an autosomal recessive generalized connective tissue disorder caused by mutations in ZNF469 and PRDM5. It is characterized by extreme thinning and fragility of the cornea that may rupture in the absence of significant trauma leading to blindness. Keratoconus or keratoglobus, high myopia, blue sclerae, hyperelasticity of the skin without excessive fragility, and hypermobility of the small joints are additional features of BCS. Transcriptional regulation of extracellular matrix components, particularly of fibrillar collagens, by PRDM5 and ZNF469 suggests that they might be part of the same pathway, the disruption of which is likely to cause the features of BCS. In the present study, we have performed molecular analysis of a cohort of 23 BCS affected patients on both ZNF469 and PRDM5, including those who were clinically reported previously [1]; the clinical description of three additional patients is reported in detail. We identified either homozygous or compound heterozygous mutations in ZNF469 in 18 patients while, 4 were found to be homozygous for PRDM5 mutations. In one single patient a mutation in neither ZNF469 nor PRDM5 was identified. Furthermore, we report the 12 novel ZNF469 variants identified in our patient cohort, and show evidence that ZNF469 is a single exon rather than a two exon gene

    Mutations in PRDM5 in Brittle Cornea Syndrome Identify a Pathway Regulating Extracellular Matrix Development and Maintenance

    Get PDF
    Extreme corneal fragility and thinning, which have a high risk of catastrophic spontaneous rupture, are the cardinal features of brittle cornea syndrome (BCS), an autosomal-recessive generalized connective tissue disorder. Enucleation is frequently the only management option for this condition, resulting in blindness and psychosocial distress. Even when the cornea remains grossly intact, visual function could also be impaired by a high degree of myopia and keratoconus. Deafness is another common feature and results in combined sensory deprivation. Using autozygosity mapping, we identified mutations in PRDM5 in families with BCS. We demonstrate that regulation of expression of extracellular matrix components, particularly fibrillar collagens, by PRDM5 is a key molecular mechanism that underlies corneal fragility in BCS and controls normal corneal development and maintenance. ZNF469, encoding a zinc finger protein of hitherto undefined function, has been identified as a quantitative trait locus for central corneal thickness, and mutations in this gene have been demonstrated in Tunisian Jewish and Palestinian kindreds with BCS. We show that ZNF469 and PRDM5, two genes that when mutated cause BCS, participate in the same regulatory pathway
    corecore