252 research outputs found

    Deconstructing the Seductive Allure of Neuroscience Explanations

    Get PDF
    Previous work showed that people find explanations more satisfying when they contain irrelevant neuroscience information. The current studies investigate why this effect happens. In Study 1 (N=322), subjects judged psychology explanations that did or did not contain irrelevant neuroscience information. Longer explanations were judged more satisfying, as were explanations containing neuroscience information, but these two factors made independent contributions. In Study 2 (N=255), subjects directly compared good and bad explanations. Subjects were generally successful at selecting the good explanation except when the bad explanation contained neuroscience and the good one did not. Study 3 (N=159) tested whether neuroscience jargon was necessary for the effect, or whether it would obtain with any reference to the brain. Responses to these two conditions did not differ. These results confirm that neuroscience information exerts a seductive effect on people’s judgments, which may explain the appeal of neuroscience information within the public sphere

    Tempo and mode of gene expression evolution in the brain across primates

    Get PDF
    Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution

    Disparities in the analysis of morphological disparity

    Get PDF
    Analyses of morphological disparity have been used to characterize and investigate the evolution of variation in the anatomy, function and ecology of organisms since the 1980s. While a diversity of methods have been employed, it is unclear whether they provide equivalent insights. Here, we review the most commonly used approaches for characterizing and analysing morphological disparity, all of which have associated limitations that, if ignored, can lead to misinterpretation. We propose best practice guidelines for disparity analyses, while noting that there can be no ‘one-size-fits-all’ approach. The available tools should always be used in the context of a specific biological question that will determine data and method selection at every stage of the analysis

    Accessing the Inaccessible: Redefining Play as a Spectrum

    Get PDF
    Defining play has plagued researchers and philosophers for years. From describing play as an inaccessible concept due to its complexity, to providing checklists of features, the field has struggled with how to conceptualize and operationalize “play.” This theoretical piece reviews the literature about both play and learning and suggests that by viewing play as a spectrum – that ranges from free play (no guidance or support) to guided play and games (including purposeful adult support while maintaining playful elements), we better capture the true essence of play and explain its relationship to learning. Insights from the Science of Learning allow us to better understand why play supports learning across social and academic domains. By changing the lens through which we conceptualize play, we account for previous findings in a cohesive way while also proposing new avenues of exploration for the field to study the role of learning through play across age and context

    Accessing the Inaccessible: Redefining Play as a Spectrum.

    Get PDF
    Defining play has plagued researchers and philosophers for years. From describing play as an inaccessible concept due to its complexity, to providing checklists of features, the field has struggled with how to conceptualize and operationalize "play." This theoretical piece reviews the literature about both play and learning and suggests that by viewing play as a spectrum - that ranges from free play (no guidance or support) to guided play and games (including purposeful adult support while maintaining playful elements), we better capture the true essence of play and explain its relationship to learning. Insights from the Science of Learning allow us to better understand why play supports learning across social and academic domains. By changing the lens through which we conceptualize play, we account for previous findings in a cohesive way while also proposing new avenues of exploration for the field to study the role of learning through play across age and context

    The WiggleZ Dark Energy Survey: Direct constraints on blue galaxy intrinsic alignments at intermediate redshifts

    Get PDF
    Correlations between the intrinsic shapes of galaxy pairs, and between the intrinsic shapes of galaxies and the large-scale density field, may be induced by tidal fields. These correlations, which have been detected at low redshifts (z<0.35) for bright red galaxies in the Sloan Digital Sky Survey (SDSS), and for which upper limits exist for blue galaxies at z~0.1, provide a window into galaxy formation and evolution, and are also an important contaminant for current and future weak lensing surveys. Measurements of these alignments at intermediate redshifts (z~0.6) that are more relevant for cosmic shear observations are very important for understanding the origin and redshift evolution of these alignments, and for minimising their impact on weak lensing measurements. We present the first such intermediate-redshift measurement for blue galaxies, using galaxy shape measurements from SDSS and spectroscopic redshifts from the WiggleZ Dark Energy Survey. Our null detection allows us to place upper limits on the contamination of weak lensing measurements by blue galaxy intrinsic alignments that, for the first time, do not require significant model-dependent extrapolation from the z~0.1 SDSS observations. Also, combining the SDSS and WiggleZ constraints gives us a long redshift baseline with which to constrain intrinsic alignment models and contamination of the cosmic shear power spectrum. Assuming that the alignments can be explained by linear alignment with the smoothed local density field, we find that a measurement of \sigma_8 in a blue-galaxy dominated, CFHTLS-like survey would be contaminated by at most +/-0.02 (95% confidence level, SDSS and WiggleZ) or +/-0.03 (WiggleZ alone) due to intrinsic alignments. [Abridged]Comment: 18 pages, 12 figures, accepted to MNRAS; v2 has correction to one author's name, NO other changes; v3 has minor changes in explanation and calculations, no significant difference in results or conclusions; v4 has an additional footnote about model interpretation, no changes to data/calculations/result

    Confirmed SARS-CoV-2 infection in Scottish neonates 2020-2022:a national, population-based cohort study

    Get PDF
    Objectives: To examine neonates in Scotland aged 0–27 days with SARS-CoV-2 infection confirmed by viral testing; the risk of confirmed neonatal infection by maternal and infant characteristics; and hospital admissions associated with confirmed neonatal infections. Design: Population-based cohort study. Setting and population: All live births in Scotland, 1 March 2020–31 January 2022. Results: There were 141 neonates with confirmed SARS-CoV-2 infection over the study period, giving an overall infection rate of 153 per 100 000 live births (141/92 009, 0.15%). Among infants born to women with confirmed infection around the time of birth, the confirmed neonatal infection rate was 1812 per 100 000 live births (15/828, 1.8%). Two-thirds (92/141, 65.2%) of neonates with confirmed infection had an associated admission to neonatal or (more commonly) paediatric care. Six of these babies (6/92, 6.5%) were admitted to neonatal and/or paediatric intensive care; however, none of these six had COVID-19 recorded as their main diagnosis. There were no neonatal deaths among babies with confirmed infection. Implications and relevance: Confirmed neonatal SARS-CoV-2 infection was uncommon over the first 23 months of the pandemic in Scotland. Secular trends in the neonatal confirmed infection rate broadly followed those seen in the general population, although at a lower level. Maternal confirmed infection at birth was associated with an increased risk of neonatal confirmed infection. Two-thirds of neonates with confirmed infection had an associated admission to hospital, with resulting implications for the baby, family and services, although their outcomes were generally good. Ascertainment of confirmed infection depends on the extent of testing, and this is likely to have varied over time and between groups: the extent of unconfirmed infection is inevitably unknown

    A population-based matched cohort study of major congenital anomalies following COVID-19 vaccination and SARS-CoV-2 infection

    Get PDF
    Evidence on associations between COVID-19 vaccination or SARS-CoV-2 infection and the risk of congenital anomalies is limited. Here we report a national, population-based, matched cohort study using linked electronic health records from Scotland (May 2020-April 2022) to estimate the association between COVID-19 vaccination and, separately, SARS-CoV-2 infection between six weeks pre-conception and 19 weeks and six days gestation and the risk of [1] any major congenital anomaly and [2] any non-genetic major congenital anomaly. Mothers vaccinated in this pregnancy exposure period mostly received an mRNA vaccine (73.7% Pfizer-BioNTech BNT162b2 and 7.9% Moderna mRNA-1273). Of the 6731 babies whose mothers were vaccinated in the pregnancy exposure period, 153 had any anomaly and 120 had a non-genetic anomaly. Primary analyses find no association between any vaccination and any anomaly (adjusted Odds Ratio [aOR] = 1.01, 95% Confidence Interval [CI] = 0.83-1.24) or non-genetic anomalies (aOR = 1.00, 95% CI = 0.81-1.22). Primary analyses also find no association between SARS-CoV-2 infection and any anomaly (aOR = 1.02, 95% CI = 0.66-1.60) or non-genetic anomalies (aOR = 0.94, 95% CI = 0.57-1.54). Findings are robust to sensitivity analyses. These data provide reassurance on the safety of vaccination, in particular mRNA vaccines, just before or in early pregnancy
    corecore