9 research outputs found

    Plant Litter Type Dictates Microbial Communities Responsible for Greenhouse Gas Production in Amended Lake Sediments

    Get PDF
    The microbial communities of lake sediments play key roles in carbon cycling, linking lakes to their surrounding landscapes and to the global climate system as incubators of terrestrial organic matter and emitters of greenhouse gasses, respectively. Here, we amended lake sediments with three different plant leaf litters: a coniferous forest mix, deciduous forest mix, cattails (Typha latifolia) and then examined the bacterial, fungal and methanogen community profiles and abundances. Polyphenols were found to correlate with changes in the bacterial, methanogen, and fungal communities; most notably dominance of fungi over bacteria as polyphenol levels increased with higher abundance of the white rot fungi Phlebia spp. Additionally, we saw a shift in the dominant orders of fermentative bacteria with increasing polyphenol levels, and differences in the dominant methanogen groups, with high CH4 production being more strongly associated with generalist groups of methanogens found at lower polyphenol levels. Our present study provides insights into and basis for future study on how shifting upland and wetland plant communities may influence anaerobic microbial communities and processes in lake sediments, and may alter the fate of terrestrial carbon entering inland waters

    Optical Properties of Dissolved Organic Matter and Their Relation to Mercury Concentrations in Water and Biota Across a Remote Freshwater Drainage Basin

    No full text
    Dissolved organic matter (DOM) includes an array of carbon-based compounds that vary in size and structure and have complex interactions with mercury (Hg) cycling in aquatic systems. While many studies have examined the relationship between dissolved organic carbon concentrations ([DOC]) and methyl Hg bioaccumulation, few studies have considered the effects of DOM composition (e.g., protein-content, aromaticity). The goal of this study was to explore the relationships between total and methyl [Hg] in water, invertebrates, and fish and optically derived measures of DOM composition from 47 lake and river sites across a boreal watershed. Results showed higher aqueous total [Hg] in systems with more aromatic DOM and higher [DOC], potentially due to enhanced transport from upstream or riparian areas. Methyl [Hg] in biota were all positively related to the amount of microbial-based DOM and, in some cases, to the proportions of labile and protein-like DOM. These results suggest that increased Hg bioaccumulation is related to the availability of labile DOM, potentially due to enhanced Hg methylation. DOM composition explained 68% and 54% more variability in [Hg] in surface waters and large-bodied fish, respectively, than [DOC] alone. These results show that optical measures of DOM characteristics are a valuable tool for understanding DOM-Hg biogeochemistry

    A Conceptual Framework for the Spruce Budworm Early Intervention Strategy: Can Outbreaks be Stopped?

    No full text
    The spruce budworm, <i>Choristoneura fumiferana</i>, Clem., is the most significant defoliating pest of boreal balsam fir (<i>Abies balsamea</i> (L.) Mill.) and spruce (<i>Picea</i> sp.) in North America. Historically, spruce budworm outbreaks have been managed via a reactive, foliage protection approach focused on keeping trees alive rather than stopping the outbreak. However, recent theoretical and technical advances have renewed interest in proactive population control to reduce outbreak spread and magnitude, i.e., the Early Intervention Strategy (EIS). In essence, EIS is an area-wide management program premised on detecting and controlling rising spruce budworm populations (hotspots) along the leading edge of an outbreak. In this article, we lay out the conceptual framework for EIS, including all of the core components needed for such a program to be viable. We outline the competing hypotheses of spruce budworm population dynamics and discuss their implications for how we manage outbreaks. We also discuss the practical needs for such a program to be successful (e.g., hotspot monitoring, population control, and cost&ndash;benefit analyses), as well as the importance of proactive communications with stakeholders

    Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange

    No full text
    In this Perspective, we put forward an integrative framework to improve estimates of land-atmosphere carbon exchange based on the accumulation of carbon in the landscape as constrained by its lateral export through rivers. The framework uses the watershed as the fundamental spatial unit and integrates all terrestrial and aquatic ecosystems as well as their hydrologic carbon exchanges. Application of the framework should help bridge the existing gap between land and atmosphere-based approaches and offers a platform to increase communication and synergy among the terrestrial, aquatic, and atmospheric research communities that is paramount to advance landscape carbon budget assessments

    The System of National Accounts and Alternative Economic Perspectives

    No full text
    corecore