11 research outputs found

    Expression and function of ATP-dependent potassium channels in zebrafish islet β-cells

    Get PDF
    ATP-sensitive potassium channels (K(ATP) channels) are critical nutrient sensors in many mammalian tissues. In the pancreas, K(ATP) channels are essential for coupling glucose metabolism to insulin secretion. While orthologous genes for many components of metabolism–secretion coupling in mammals are present in lower vertebrates, their expression, functionality and ultimate impact on body glucose homeostasis are unclear. In this paper, we demonstrate that zebrafish islet β-cells express functional K(ATP) channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. We further show that pharmacological activation of native zebrafish K(ATP) using diazoxide, a specific K(ATP) channel opener, is sufficient to disturb glucose tolerance in adult zebrafish. That β-cell K(ATP) channel expression and function are conserved between zebrafish and mammals illustrates the evolutionary conservation of islet metabolic sensing from fish to humans, and lends relevance to the use of zebrafish to model islet glucose sensing and diseases of membrane excitability such as neonatal diabetes

    Obesity and altered glucose metabolism impact HDL composition in CETP transgenic mice: a role for ovarian hormones

    Get PDF
    Mechanisms underlying changes in HDL composition caused by obesity are poorly defined, partly because mice lack expression of cholesteryl ester transfer protein (CETP), which shuttles triglyceride and cholesteryl ester between lipoproteins. Because menopause is associated with weight gain, altered glucose metabolism, and changes in HDL, we tested the effect of feeding a high-fat diet (HFD) and ovariectomy (OVX) on glucose metabolism and HDL composition in CETP transgenic mice. After OVX, female CETP-expressing mice had accelerated weight gain with HFD-feeding and impaired glucose tolerance by hyperglycemic clamp techniques, compared with OVX mice fed a low-fat diet (LFD). Sham-operated mice (SHAM) did not show HFD-induced weight gain and had less glucose intolerance than OVX mice. Using shotgun HDL proteomics, HFD-feeding in OVX mice had a large effect on HDL composition, including increased levels of apoA2, apoA4, apoC2, and apoC3, proteins involved in TG metabolism. These changes were associated with decreased hepatic expression of SR-B1, ABCA1, and LDL receptor, proteins involved in modulating the lipid content of HDL. In SHAM mice, there were minimal changes in HDL composition with HFD feeding. These studies suggest that the absence of ovarian hormones negatively influences the response to high-fat feeding in terms of glucose tolerance and HDL composition. CETP-expressing mice may represent a useful model to define how metabolic changes affect HDL composition and function

    Data from: Expression and function of ATP-dependent potassium channels in zebrafish islet β-cells

    No full text
    ATP-sensitive potassium channels (KATP channels) are critical nutrient sensors in many mammalian tissues. In the pancreas, KATP channels are essential for coupling glucose metabolism to insulin secretion. While orthologous genes for many components of metabolism–secretion coupling in mammals are present in lower vertebrates, their expression, functionality and ultimate impact on body glucose homeostasis are unclear. In this paper, we demonstrate that zebrafish islet β-cells express functional KATP channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. We further show that pharmacological activation of native zebrafish KATP using diazoxide, a specific KATP channel opener, is sufficient to disturb glucose tolerance in adult zebrafish. That β-cell KATP channel expression and function are conserved between zebrafish and mammals illustrates the evolutionary conservation of islet metabolic sensing from fish to humans, and lends relevance to the use of zebrafish to model islet glucose sensing and diseases of membrane excitability such as neonatal diabetes

    Supplementary Figures from Expression and function of ATP-dependent potassium channels in zebrafish islet β-cells

    No full text
    ATP-sensitive potassium channels (K<sub>ATP</sub> channels) are critical nutrient sensors in many mammalian tissues. In the pancreas, K<sub>ATP</sub> channels are essential for coupling glucose metabolism to insulin secretion. While orthologous genes for many components of metabolism–secretion coupling in mammals are present in lower vertebrates, their expression, functionality and ultimate impact on body glucose homeostasis are unclear. In this paper, we demonstrate that zebrafish islet β-cells express functional K<sub>ATP</sub> channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. We further show that pharmacological activation of native zebrafish K<sub>ATP</sub> using diazoxide, a specific K<sub>ATP</sub> channel opener, is sufficient to disturb glucose tolerance in adult zebrafish. That β-cell K<sub>ATP</sub> channel expression and function are conserved between zebrafish and mammals illustrates the evolutionary conservation of islet metabolic sensing from fish to humans, and lends relevance to the use of zebrafish to model islet glucose sensing and diseases of membrane excitability such as neonatal diabetes

    Supplementary data and original records from Expression and function of ATP-dependent potassium channels in zebrafish islet β-cells

    No full text
    ATP-sensitive potassium channels (K<sub>ATP</sub> channels) are critical nutrient sensors in many mammalian tissues. In the pancreas, K<sub>ATP</sub> channels are essential for coupling glucose metabolism to insulin secretion. While orthologous genes for many components of metabolism–secretion coupling in mammals are present in lower vertebrates, their expression, functionality and ultimate impact on body glucose homeostasis are unclear. In this paper, we demonstrate that zebrafish islet β-cells express functional K<sub>ATP</sub> channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. We further show that pharmacological activation of native zebrafish K<sub>ATP</sub> using diazoxide, a specific K<sub>ATP</sub> channel opener, is sufficient to disturb glucose tolerance in adult zebrafish. That β-cell K<sub>ATP</sub> channel expression and function are conserved between zebrafish and mammals illustrates the evolutionary conservation of islet metabolic sensing from fish to humans, and lends relevance to the use of zebrafish to model islet glucose sensing and diseases of membrane excitability such as neonatal diabetes
    corecore