11 research outputs found

    An Educational and Physical Program to Reduce Headache, Neck/Shoulder Pain in a Working Community: A Cluster-Randomized Controlled Trial

    Get PDF
    Background: Noninvasive physical management is often prescribed for headache and neck pain. Systematic reviews, however, indicate that the evidence of its efficacy is limited. Our aim was to evaluate the effectiveness of a workplace educational and physical program in reducing headache and neck/shoulder pain. Methodology/Principal Findings: Cluster-randomized controlled trial. All municipal workers of the City of Turin, Italy, were invited to participate. Those who agreed were randomly assigned, according to their departments, to the intervention group (IG) or to the control group and were given diaries for the daily recording of pain episodes for 1 month (baseline). Subsequently, only the IG (119 departments, 923 workers) began the physical and educational program, whereas the control group (117 departments, 990 workers) did not receive any intervention. All participants were again given diaries for the daily recording of pain episodes after 6 months of intervention. The primary outcome was the change in the frequency of headache (expressed as the proportion of subjects with a 6550% reduction of frequency; responder rate); among the secondary outcomes there were the absolute reduction of the number of days per month with headache and neck/shoulder pain. Differences between the two groups were evaluated using mixed-effect regression models. The IG showed a higher responder rate [risk ratio, 95% confidence interval (CI)] for headache (1.58; 1.28 to 1.92) and for neck/shoulder pain (1.53; 1.27 to 1.82), and a larger reduction of the days per month (95% CI) with headache (-1.72; -2.40 to -1.04) and with neck/shoulder pain (-2.51; -3.56 to -1.47). Conclusions: The program effectively reduced headache and neck/shoulder pain in a large working community and appears to be easily transferable to primary-care settings. Further trials are needed to investigate the program effectiveness in a clinical setting, for highly selected patients suffering from specific headache types. Trial Registration: ClinicalTrials.gov NCT00551980. \ua9 2012 Mongini et al

    Adverse outcome pathway-driven analysis of liver steatosis in vitro : a case study with cyproconazole

    No full text
    Adverse outcome pathways (AOPs) describe causal relationships between molecular perturbation and adverse cellular effects and are being increasingly adopted for linking in vitro mechanistic toxicology to in vivo data from regulatory toxicity studies. In this work, a case study was performed by developing a bioassay toolbox to assess key events in the recently proposed AOP for chemically induced liver steatosis. The toolbox is comprised of in vitro assays to measure nuclear receptor activation, gene and protein expression, lipid accumulation, mitochondrial respiration, and formation of fatty liver cells. Assay evaluation was performed in human HepaRG hepatocarcinoma cells exposed to the model compound cyproconazole, a fungicide inducing steatosis in rodents. Cyproconazole dose-dependently activated RAR alpha and PXR, two molecular initiating events in the steatosis AOP. Moreover, cyproconazole provoked a disruption of mitochondrial functions and induced triglyceride accumulation and the formation of fatty liver cells as described in the AOP. Gene and protein expression analysis, however, showed expression changes different from those proposed in the AOP, thus suggesting that the current version of the AOP might not fully reflect the complex mechanisms linking nuclear receptor activation and liver steatosis. Our study shows that cyproconazole induces steatosis in human liver cells in vitro and demonstrates the utility of systems-based approaches in the mechanistic assessment of molecular and cellular key events in an AOP. AOP-driven in vitro testing as demonstrated can further improve existing AOPs, provide insight regarding molecular mechanisms of toxicity, and inform predictive risk assessment

    An adverse outcome pathway-based approach to assess steatotic mixture effects of hepatotoxic pesticides in vitro

    No full text
    Exposure to complex chemical mixtures requires a tiered strategy for efficient mixture risk assessment. As a part of the EuroMix project we developed an adverse outcome pathway (AOP)-based assay toolbox to investigate the combined effects of the liver steatosis-inducing compounds imazalil, thiacloprid, and clothianidin in human HepaRG hepatocarcinoma cells. Compound-specific relative potency factors were determined using a benchmark dose approach. Equipotent mixtures were tested for nuclear receptor activation, gene and protein expression, and triglyceride accumulation, according to the molecular initiating events and key events proposed in the steatosis AOP. All three compounds affected the activity of nuclear receptors, but not key genes/proteins as proposed. Triglyceride accumulation was observed with three different methods. Mixture effects were in agreement with the assumption of dose additivity for all the combinations and endpoints tested. Compound-specific RPFs remained similar over the different endpoints studied downstream the AOP. Therefore, it might be possible to reduce testing to a smaller battery of key tests. The results demonstrate the suitability of our in vitro assay toolbox, integrated within an AOP framework and combined with the RPF approach, for the analysis of steatotic effects of chemical mixtures. However, mRNA results suggest that the steatosis AOP still needs improvement.</p

    Adverse Outcome Pathway-Driven Analysis of Liver Steatosis <i>in Vitro</i>: A Case Study with Cyproconazole

    No full text
    Adverse outcome pathways (AOPs) describe causal relationships between molecular perturbation and adverse cellular effects and are being increasingly adopted for linking <i>in vitro</i> mechanistic toxicology to <i>in vivo</i> data from regulatory toxicity studies. In this work, a case study was performed by developing a bioassay toolbox to assess key events in the recently proposed AOP for chemically induced liver steatosis. The toolbox is comprised of <i>in vitro</i> assays to measure nuclear receptor activation, gene and protein expression, lipid accumulation, mitochondrial respiration, and formation of fatty liver cells. Assay evaluation was performed in human HepaRG hepatocarcinoma cells exposed to the model compound cyproconazole, a fungicide inducing steatosis in rodents. Cyproconazole dose-dependently activated RARα and PXR, two molecular initiating events in the steatosis AOP. Moreover, cyproconazole provoked a disruption of mitochondrial functions and induced triglyceride accumulation and the formation of fatty liver cells as described in the AOP. Gene and protein expression analysis, however, showed expression changes different from those proposed in the AOP, thus suggesting that the current version of the AOP might not fully reflect the complex mechanisms linking nuclear receptor activation and liver steatosis. Our study shows that cyproconazole induces steatosis in human liver cells <i>in vitro</i> and demonstrates the utility of systems-based approaches in the mechanistic assessment of molecular and cellular key events in an AOP. AOP-driven <i>in vitro</i> testing as demonstrated can further improve existing AOPs, provide insight regarding molecular mechanisms of toxicity, and inform predictive risk assessment

    SCIM: Universal Single-Cell Matching with Unpaired Feature Sets

    No full text
    Motivation Recent technological advances have led to an increase in the production and availability of single-cell data. The ability to integrate a set of multi-technology measurements would allow the identification of biologically or clinically meaningful observations through the unification of the perspectives afforded by each technology. In most cases, however, profiling technologies consume the used cells and thus pairwise correspondences between datasets are lost. Due to the sheer size single-cell datasets can acquire, scalable algorithms that are able to universally match single-cell measurements carried out in one cell to its corresponding sibling in another technology are needed. Results We propose Single-Cell data Integration via Matching (SCIM), a scalable approach to recover such correspondences in two or more technologies. SCIM assumes that cells share a common (low-dimensional) underlying structure and that the underlying cell distribution is approximately constant across technologies. It constructs a technology-invariant latent space using an auto-encoder framework with an adversarial objective. Multi-modal datasets are integrated by pairing cells across technologies using a bipartite matching scheme that operates on the low-dimensional latent representations. We evaluate SCIM on a simulated cellular branching process and show that the cell-to-cell matches derived by SCIM reflect the same pseudotime on the simulated dataset. Moreover, we apply our method to two real-world scenarios, a melanoma tumor sample and a human bone marrow sample, where we pair cells from a scRNA dataset to their sibling cells in a CyTOF dataset achieving 93% and 84% cell-matching accuracy for each one of the samples respectively. Availability https://github.com/ratschlab/sci

    Establishing standardized immune phenotyping of metastatic melanoma by digital pathology

    No full text
    CD8+ tumor-infiltrating T cells can be regarded as one of the most relevant predictive biomarkers in immune-oncology. Highly infiltrated tumors, referred to as inflamed (clinically “hot”), show the most favorable response to immune checkpoint inhibitors in contrast to tumors with a scarce immune infiltrate called immune desert or excluded (clinically “cold”). Nevertheless, quantitative and reproducible methods examining their prevalence within tumors are lacking. We therefore established a computational diagnostic algorithm to quantitatively measure spatial densities of tumor-infiltrating CD8+ T cells by digital pathology within the three known tumor compartments as recommended by the International Immuno-Oncology Biomarker Working Group in 116 prospective metastatic melanomas of the Swiss Tumor Profiler cohort. Workflow robustness was confirmed in 33 samples of an independent retrospective validation cohort. The introduction of the intratumoral tumor center compartment proved to be most relevant for establishing an immune diagnosis in metastatic disease, independent of metastatic site. Cut-off values for reproducible classification were defined and successfully assigned densities into the respective immune diagnostic category in the validation cohort with high sensitivity, specificity, and precision. We provide a robust diagnostic algorithm based on intratumoral and stromal CD8+ T-cell densities in the tumor center compartment that translates spatial densities of tumor-infiltrating CD8+ T cells into the clinically relevant immune diagnostic categories “inflamed”, “excluded”, and “desert”. The consideration of the intratumoral tumor center compartment allows immune phenotyping in the clinically highly relevant setting of metastatic lesions, even if the invasive margin compartment is not captured in biopsy material

    Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/progenitor cells isolated from mouse mammary epithelium

    Get PDF
    INTRODUCTION: Early pregnancy has a strong protective effect against breast cancer in humans and rodents, but the underlying mechanism is unknown. Because breast cancers are thought to arise from specific cell subpopulations of mammary epithelia, we studied the effect of parity on the transcriptome and the differentiation/proliferation potential of specific luminal and basal mammary cells in mice. METHODS: Mammary epithelial cell subpopulations (luminal Sca1-, luminal Sca1+, basal stem/progenitor, and basal myoepithelial cells) were isolated by flow cytometry from parous and age-matched virgin mice and examined by using a combination of unbiased genomics, bioinformatics, in vitro colony formation, and in vivo limiting dilution transplantation assays. Specific findings were further investigated with immunohistochemistry in entire glands of parous and age-matched virgin mice. RESULTS: Transcriptome analysis revealed an upregulation of differentiation genes and a marked decrease in the Wnt/Notch signaling ratio in basal stem/progenitor cells of parous mice. Separate bioinformatics analyses showed reduced activity for the canonical Wnt transcription factor LEF1/TCF7 and increased activity for the Wnt repressor TCF3. This finding was specific for basal stem/progenitor cells and was associated with downregulation of potentially carcinogenic pathways and a reduction in the proliferation potential of this cell subpopulation in vitro and in vivo. As a possible mechanism for decreased Wnt signaling in basal stem/progenitor cells, we found a more than threefold reduction in the expression of the secreted Wnt ligand Wnt4 in total mammary cells from parous mice, which corresponded to a similar decrease in the proportion of Wnt4-secreting and estrogen/progesterone receptor-positive cells. Because recombinant Wnt4 rescued the proliferation defect of basal stem/progenitor cells in vitro, reduced Wnt4 secretion appears to be causally related to parity-induced alterations of basal stem/progenitor cell properties in mice. CONCLUSIONS: By revealing that parity induces differentiation and downregulates the Wnt/Notch signaling ratio and the in vitro and in vivo proliferation potential of basal stem/progenitor cells in mice, our study sheds light on the long-term consequences of an early pregnancy. Furthermore, it opens the door to future studies assessing whether inhibitors of the Wnt pathway may be used to mimic the parity-induced protective effect against breast cancer
    corecore